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Ising Model 

We consider a Glauber dynamics reversible with respect to the two-dimensional 
Ising model in a finite square of side L, in the absence of an external field and 
at large inverse temperature ft. We first consider the gap in the spectrum of the 
generator of the dynamics in two different cases : with plus and open boundary 
conditions. We prove that, when the symmetry under global spin flip is broken 
by the boundary conditions, the gap is much larger than the case in which the 
symmetry is present. For this latter we compute exactly the asymptotics of 
- ( l / i lL)  log(gap) as L ~ oo and show that it coincides with the surface tension 
along one of the coordinate axes. As a consequence we are able to study quite 
precisely the large deviations in time of the magnetization and to obtain an 
upper bound on the spin-spin time correlation in the infinite-volume plus phase. 
Our results establish a connection between the dynamical large deviations and 
those of the equilibrium Gibbs measure studied by Shlosman in the framework 
of the rigorous description of the Wulff shape for the Ising model. Finally we 
show that, in the case of open boundary conditions, it is possible to rescale the 
time with L in such a way that, as L --* oo, the finite-dimensional distributions 
of the time-rescaled magnetization converge to those of a symmetric continuous- 
time Markov chain on the two-state space {-m*(f l ) ,  m*(fl)}, m*(fl) being the 
spontaneous magnetization. Our methods rely upon a novel combination of 
techniques for bounding from below the gap of symmetric Markov chains on 
complicated graphs, developed by Jerrum and Sinclair in their Markov chain 
approach to hard computational problems, and the idea of introducing "block 
Glauber dynamics" instead of the standard single-site dynamics, in order to 
put in evidence more effectively the effect of the boundary conditions in the 
approach to equilibrium. 

KEY WORDS: Ising model; phase coexistence region. 

Dipartimento di Matematica, III Universit:~ di Roma, Rome, Italy. 
2 Istituto per le Applicazioni del Calcolo "Mauro Picone," CNR, Rome, Italy. e-mail: martin- 

@mat.uniromal.it. 

1179 

822/76/5-6-6 0022-~715/94/0900-1179507.00/0 �9 1994 Plenum Publishing Corporation 



1180 Mar t ine l l i  

1. I N T R O D U C T I O N  

In recent years there has been very important progress in the rigorous 
analysis of Glauber dynamics (see Section 1 for a precise definition) for 
classical lattice spin systems when the thermodynamic parameters are such 
that the static system, described by the usual Gibbs measure 

e x p ( - - t H )  
/~ Z 

does not undergo a phase transition in the thermodynamic limit. 
In particular we refer the reader to the series of papers by Stroock 

and Zegarlinski (see ref. 28 and references therein), by Olivieri and 
Martinelli, cIa's91 Martinelli et al., (2~ and Lu and Yau (16) for the proof, 
under various mixing conditions on the Gibbs measure p, of the exponen- 
tial (in time) relaxation to equilibrium, represented by p itself, in finite or 
infinite volume, of the associated Glauber dynamics, and to the work by 
Schonmann (see ref. 24 and references therein), Kotecky and Olivieri, ~176 
and Scoppola t23~ for detailed description of the metastable behavior of 
Glauber dynamics for Ising-type models close to the line of first-order 
phase transition. 

It is important to emphasize that some of the results in the above 
works cover most of the one-phase region, going sometimes, e.g., in 
ferromagnetic systems, arbitrarily close to the critical point.(~s'2~ 

A natural question arises as to what happens when the thermo- 
dynamic parameters are such that we do have a phase transition in the 
thermodynamic limit. To be more concrete, let us consider the usual Ising 
model in d dimensions, d>~ 2, in the absence of an external field, described 
by the formal (normalized) energy function 

H(cr)= -�89 ~ (a(x) a (y ) - l ) ,  a ~ { - 1 , 1 }  z~ (O.l) 
x ,  y E A  d 

I x - "  .vl = I 

and let us suppose that the inverse temperature fl is larger (actually in all 
rigorous results much larger) than the critical value tic. 

Then, as is well known (see, e.g., ref. 13), any associated infinite- 
volume Glauber dynamics is not ergodic and it is rather natural to ask how 
this absence of ergodicity is reflected if we look at the dynamics in a finite, 
but large cube VL of side L, where ergodicity is never broken. 

A first partial answer was provided by Thomas c29) some years ago. 
He showed that, if the symmetry of H(tr) under global spin flip is not 
broken by the boundary conditions on the exterior of the cube V L, then 
the relaxation time to equilibrium, which in a first approximation can be 
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taken equal to the inverse of the gap in the spectrum of the generator L~,L 
of the dynamics, diverges, as L ~ or, at least as an exponential of the 
surface L a-'. 

The reason for such a result is the following. When the symmetry is 
not broken, e.g., when boundary conditions are open (i.e., absent) or 
periodic, then the energy landscape determined by the function H(tr) has 
only two absolute minima, corresponding to the two configurations identi- 
cally equal to either + I or to - 1 .  Thus the dynamics started, e.g., from 
all minuses, in order to relax to equilibrium, has to reach the neighborhood 
of the opposite minimum by necessarily crossing the set of configurations 
of zero magnetization. Since the Gibbs measure gives to the latter a weight 
of the order of a negative exponential of the surface (see, e.g., ref. 25), 
a kind of bottleneck is present and the result follows by a rather simple 
argument (see the first part of the proof of Theorem 4.1 below). 

The same reasoning also suggests that, if the symmetry is broken by 
the boundary conditions, e.g., by fixing equal to + 1 all spins outside VL, 
then the relaxation time should be much shorter than in the previous case 
since there should be no bottlenecks to cross. Equilibrium is, in this case, 
induced by the boundary conditions by means of some sort of plus spin 
wave, initially attached to the boundary and shrinking to zero as time 
goes on. 

The interesting but unproven conjecture is that, at least in two dimen- 
sions with plus boundary conditions, the relaxation time will diverge, as 
L ---, or, like L-'. The proof of the above conjecture would have some very 
nice consequences on the equal site time correlation function of the infinite- 
volume dynamics started in the plus phase, for which Fisher and Huse (6~ 
predicted, using the above conjecture, a stretched exponential decay of the 

form e x p ( - x F  ) (see also ref. 21 for numerical simulations and ref. 17 for 
further discussion). 

In this paper we consider the above and other related questions for the 
two-dimensional Ising model at very low temperature without external 
field. For some less precise results in arbitrary dimensions see the remark 
after Theorem 4.2. 

In Section 3 we prove a lower bound on the gap in the spectrum of the 
generator LvL of the Glauber dynamics with plus boundary conditions of 
the form 

gap(Lvt)>~exp(-C3L'/2+~), ~E(O, �89 (0.2) 

which, although it gives a bound on the relaxation time which is far from 
the conjectured L 2 law, is in any case much larger than the upper bound 
obtained by Thomas without the plus boundary conditions. 
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As a consequence we derive an upper bound of the form 

exp[ - log( t )~ ] ,  cte [0, 2) 

on the equal site time correlation function of the infinite-volume dynamics 
started in the plus phase. 

In Section 4 we compute exactly the asymptotics of the gap with open 
boundary conditions. More precisely we obtain, for any e e (0, �88 any fl 
large enough, and any L 

exp[-flz(fl)  L -  CflL L/2+`] <~gap(Lv,)<~ exp[-[3z(fl) L + CflL 1/2+~] 

where z(fl) is the surface tension in the direction of, e.g., the horizontal axis. 
As a byproduct of the proof of this result, we show that the bound (0.2) 
is valid even if the plus boundary conditions are added on only one side 
of the square VL. 

The proofs of the above two results follow two very similar steps: 

Step 1: We prove the sought result for a generalized Glauber 
dynamics in which single sites are replaced by suitable blocks. This mean 
that, given a priori a covering {Qi} of I/L, at each updating of the dynamics 
the spin configuration is changed in only one block Qi and there it is 
replaced by the equilibrium Gibbs measure of the block given the con- 
figuration outside it. It turns out that a convenient choice of the blocks in 
our case consists of long and thin overlapping rectangles with basis L and 
height L 1/2+~, 0<e ,~  1. 

Step 2: We relate the gap of the single-site Glauber dynamics to 
that of the generalized block dynamics in such a way that the estimates 
obtained in step 1 are not significantly changed. 

The above way to attack the problem is not entirely new; it was in fact 
introduced long ago by Holley (sJ to prove exponential convergence to equi- 
librium in the one-phase region. One has in fact that, if the system is away 
from the phase transition region and if the blocks are overlapping large 
enough (depending on the thermodynamic parameters) cubes, the block 
Glauber dynamics behaves as a very high-temperature single-site Glauber 
dynamics, i.e., an almost independent system for which the discussion of 
the approach to equilibrium is a relatively easy task (see Section 4 of 
ref. 20). 

While we accomplish the first step via a very natural probabilistic 
construction, the second, rather crucial, step is carried out via the applica- 
tion to our context of a clever geometric technique introduced by Jerrum 
and Sinclair 1~1'.2'271 (see also ref. 5), to estimate from below the gap in the 
spectrum of a symmetric Markov chain on complicated graphs. They 
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invented their technique while working on a stochastic algorithm approach 
to compute the partition function Z of the Ising model and the permanent 
of a large matrix in a time polynomial in the size of the problem. 

Such a technique, which is illustrated in our case in a self-contained 
way in Section 2, gives in a very natural way a lower bound on the gap of 
the generator of the dynamics in a rectangle R with shortest side 1, with or 
without boundary conditions, of the form 

gap(L R)/> exp( - f lC l )  

Morevoer, if the blocks Q~ of the generalized Glauber dynamics are 
suitable translations of the rectangle R, then 

gap(Glauber) ~> exp( - flCl) gap(generalized Glauber) 

It is worthwhile to mention that our proof of step I is constructive in the 
sense that it indicates how the system actually reaches equilibrium: by 
simply propagating the plus boundary conditions in the bulk if these are 
present and the initial configuration is, e.g., all minuses, or by creating 
inside the starting phase, via a large fluctuation, an almost horizontal (or 
vertical) interface close, e.g., to the bottom side of VL which afterward 
rigidly moves to the opposite side until the other phase has invaded the 
whole volume. 

Once we have a precise control on the relaxation time with open 
boundary conditions, we can study in detail the large fluctuations of the 
magnetization 

m ( a , ) = ~ - ~  tr,(:r 

by considering, for example, the hitting time rp of the set 

Mp = {a; re(a) = p }, p ~ { -m*(fl),  m*(fl)} 

with m*(fl) the spontaneous magnetization. 
In Section 5 we show that, if the starting configuration is distributed 

according to the equilibrium measure restricted to the "phase" of positive 
magnetization or if it is identically equal to plus one, then the expected 
value E(rp) of the hitting time rp is of the order 

E(rp) ,~exp[flL~b(p v 0)] 

where the rate function ~b(p) is the same as for the static problem: 

ltv~ (m(a ) = p) ~ exp[ - flL~O(p)] 
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and it has been computed by Shlosman 126~ in the framework of the rigorous 
description of the Wulff shape for the Ising model carried out by Dobrushin 
et  al. ~4~ We also show that the hitting time zp rescaled by roughly its average 
converges, as L ~ oo, to an exponential time of mean one. 

It is important to outline that the typical configurations of the equi- 
librium Gibbs measure under the condition {re(a)= p } have a very precise 
geometric structure related to the Wulff shape with open boundary condi- 
tions. ~26~ Thus, the fact that the rate function for E(zp) is the same as in 
the static problem suggests that when the system started in the positively 
magnetized "phase" reaches for the first time the set Mp, it does it by 
forming a droplet of the right volume and with the correct Wulff shape. We 
hope to come back in a future work to this and related problems. 

A key step in the discussion of the above problems is the proof, based 
on the results of Section 3, that the relaxation time inside a single 
"phase" is much shorter than the typical values of the hitting time zp (see 
Proposition 5.2 for a precise statement). 

This last result indicates that the gap in the spectrum of the generator 
restricted to the invariant subspace of the functions even with respect to 
global spin flip is much larger than the true gap; unfortunately we do not 
have any precise statement in this direction. 

Finally in Section 6 we complete the analysis of the time evolution of 
the magnetization by showing that, if the time is scaled with L in such a 
way that on the new unit of time the system is likely to have jumped from 
one phase to the other, then the finite-dimensional distributions of the 
time-scaled magnetization converge, as L ~ oo, to those of a continuous- 
time Markov chain on the two-state space {-m*(f l ) ,  m*(fl)} with unitary 
jump rate. 

The rest of the paper contains a preliminary section, Section 1, where 
all the necessary definitions are given together with the required results on 
Wulff shape, cluster expansion, and so forth. The proofs of various techni- 
cal results for the Ising model are collected in an appendix. 

1. P R E L I M I N A R I E S  

In this section we precisely define the model and the random dynamics 
that will be the object of study in the next sections. 

1.1. The  Ising M o d e l  in a Finite Set  

Let Z 2 be the usual two-dimensional square lattice with sites 
x = (xt, x2), equipped with the norm Ilxll = Ix,I + Ix21. We will sometimes 
consider Z 2 as a graph with vertices the sites x ~ Z 2 and edges all pairs of 
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sites x and y such that [ Ix-  YI[ = 1. We will use the notation a to denote 
a generic element of the set 12z2= { -  1, + 1 }z2; whenever V c Z  2 we use 
the notation a v =  {a(x), x e  V} to denote the restriction of a to the set V 
and 12 v to denote the set of them. 

Given V c  Z 2, we define the interior and exterior boundaries of V as 

Oin tV~-{xEV;  3 y C V ;  [Ix--y[I = 1} 

O~x t V -  { x r  V; 3 y e  V; I I x -  yll = 1 } 

and the boundary O V as 

OV= {(x, y);  xe,~i~ V, yeOox, V; I Ix-yl l  =1}  

We also denote by I VI the cardinality of V. 
9 r r U  I~V I" Next, for any finite subset V of Z-, we define the energy n v �9 (av)  

of a configuration a v e t2v with boundary conditions r outside V, 
r e  { - 1 ,  + 1} z', and boundary coupling 0~< UeV(x, y)<~ 1, (x, y ) e O V ,  as 

H Ud,, t �9 (av)=- �89  ~ [o , , (x )~Ay) - l ]  
X . I ' E V  

U X - - ' Y l l  = l 

- ~ U~V(x, y) [o 'v(x) 'c(y) - i ]  ( i . i )  
I X ,  . l ' )  (~ i 'U"  

and the associated Gibbs probability measure at inverse temperature fl: 

U d V  r u O V  la v " ( a v ) = Z ( V ,  r) -I  exp[ v"".~ - f i l l y  (av)]  (1.2) 

where the partition function Z( V, U ~v, r) is given by 

U ~ p  1: Z(V,  U 'w, r ) = ~ e x p [ - f l H v  ' (av)]  (1.3) 
o- V 

If the boundary condition z is the special configuration r ( x ) =  1 Vxe Z 2, 
then in all our notation the superscript z will be replaced by a simple +.  

U ~V ~ l  
Notice that the - 1  appearing in the definition of the energy H v �9 t a r )  
fixes equal to zero the energy with plus boundary conditions of the con- 
figuration identically equal to plus one. 

We also set, for any function f :  f lv  ~ R, 

U ~V "t U ~1" ~' 
#Xv " ( f )  = ~ l~v ' (a v) f ( a  v) 

el V 

Although for technical reasons it will be convenient to consider cases in 
which the boundary coupling u~V(x, y)  does depend on x and y and it is, 
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for example, equal to plus one along some parts of the external boundary 
of V and positive but very weak along some other parts of the boundary, 
the most typical choices of U ov will be either U ov identically equal to one, 
in which case the Gibbs measure (1.2) is the usual Ising model in the set 
V with z boundary conditions, or U '~v identically equal to zero, which 
corresponds to the Ising model with open boundary conditions. In both 

U '~V ~ U 0 v ,  cases the (cumbersome notation #v  ' ,  Z(V,  T) will be replaced by the 
more natural ones/~v, ~v ~  Z( V, z), Z( V, ~ ) ,  respectively. 

As a next step we recall some monotonicity properties enjoyed by the 
Gibbs measure /~v ' ,  which easily follow from the well-known F K G  
inequalities, (7) which will play a crucial role in the next sections. 

Given two configurations Zl, z2 in ~z2, we say that Zl ~< r2 iff 

Zl(X)<~ ~2(x) V x e Z  2 

and similarly for t~ v, ~v ~ g2 v- Then, for any pair of finite subsets V l c  V2, 
any pair of boundary couplings U~V'(x, y), U~V'(x, y), and boundary 
conditions Zl, r2 such that 

U~V'(x, y) zl(y)<~ U~V'(x, y ) z2 (y )  V(x, y )~OVt  

and any function f :  C2 v, ~ R which is increasing with respect to the above 
partial order, we have 

~wL'qt ,r ~ ~vLr,,r, 
P v, w J <~ l.t v ;  "tJ J (1.4) 

i.~ueV2,TIt t'~ ~ + 1:2 w , -~ .Uv , ( f )  (1.5) 

1.2. Contours  and Cluster Expansion 

In this section we recall, for the reader's convenience, a version of the 
cluster expansion for the partition function Z(V, U ~r, + ) valid under some 
restrictions on the boundary coupling U ~v, which will turn out to be quite 
essential in the next sections. The material that follows has been adapted 
to our situation, in which U ~v is not necessarily identically equal to one, 
from Sections 3.8, and 3.9 of ref. 4. 

To begin with, let us recall the definition of Peierls contours for a 
generic configuration G which is identically equal to + 1 outside a finite 
region. 

If we denote by Z 2" the dual lattice of Z 2, we call a bond any segment 
in R 2 connecting two neighboring sites of Z 2~ Then we say that two sites 
x and y in Z 2 are separated by the bond h if their distance (as sites in R 2) 
from h is equal to 1/2. Given t~ e ~z : ,  we denote by F(G) the collection of 
all bonds separating sites x and y in Z 2 where or(x) # G(y). If, moreover, we 
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use the convention that any pair of or thogonal  bonds that intersect in a 
given site x* of the dual lattice Z 2~ are a linked pair o f  bonds iff they are 
both on the same side of the 45 deg line across x*, then we immediately see 
that F(a)  splits up in a unique way into a collection of closed contours 
Fl (a), F2(a)  . . . . .  l ~ i ( f f )  . . . . .  where a closed contour  is a sequence eo, et, e2 ..... 
e,, of bonds such that :  

(i) e;v~ej for all i a n d j  with the exception of i = 0  a n d j = n ,  for 
which eo = e,,. 

(ii) For  all i the bonds ei and ei+ 1 have a common  vertex in Z 2". 

(iii) If ei, e;+ l, ej, ej+ ~ intersect at a given site x*, then both ei, e;+ 1 
and ej, ej+ l are linked pairs of bonds. 

The length IFI of a contour  is simply the number  of bonds in F. Given 
a contour  F, we denote by zIF the set of sites in Z 2 such that either their 
distance (in R 2) from F is 1/2 or their distance from the set of vertices of 
Z 2" where two non-linked pair of bonds of F meet is equal to I/x//2. 

Since we can always identify any finite set V c  Z 2 with the bounded set 
P c  R 2 obtained by considering the union of all unit closed squares cen- 
tered at each site in V, with an abuse of notat ion we will write for a generic 
closed contour  F :  F c  V if F c  ~" and Fca V for the set of bonds of F(a) 
contained in V. 

Finally, given a boundary  condition z on the external boundary  of a 
finite region V, we can associate to any element cry the configuration 
a ~r+ I ~ f2z., equal to av  inside V, equal to z on 0ex, V, and equal to + 1 out- 
side V u 0e,t V. Then, via the previous construction, we can associate in a 
unique way to av  the finite collection of closed contours F(a ~+ ~) that, for 
simplicity, will be referred to as F*(av).  If we consider F ' (av ) ca  V, then it 
will consist of the union of some closed contours, in the sequel referred to 
as the closed contours of a v under the boundary  condition r, and some 
open polygonal curves that will be referred to as the open contours of a v 
under the boundary  condition r, where an open polygonal line is a 
sequence of distinct bonds eo, e, ,  e, ..... e,, satisfying (ii) and (iii) above. 

Notice that, by construction, the first and last bond of an open 
contour  necessarily separate at least one site in 0in t V. 

Let us now assume that 

C~v = min U'~V(x ,y )>O (1.6) 
(.,.., y ) ~ i~ V 

Then, if for a given closed contour  F we write F ev for the sets of bonds in 
F that separate two sites (x, y ) ~  OV and we set UOV(h)= U~V(x, y)  for any 
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pair (x, y)~ OV that are separated by h E Fav, a simple computation shows 
that 

HU~"+(av) " ~ { I F I -  ~, [ 1 -  UeV(h)]} (1.7) 
F e  F + ( a t 9  h ~  F ~t" 

Thus the partition function can be written as 

Z(V, UeV, + ) = ~ e x p I - 3 ( 2  
r 

(1.8) 

We can rewrite (1.8) in a more suitable form by introducing the notion of 
compatibility between different contours. 

We say that the contours F1 ..... F,, in V are compatible if there exists 
avef2v such that F+(av)= {Fl ..... F,,} and we denote by cg v the set of 

uOV 
them. Then, if we denote by z v (F) the weight of a single contour F, 

z,, (r)=exp -32 IFI- ~ [1-U~ (1.9) 
tl ff F ol" 

we can write (1.8) as 

U dV Z(V, U ~ + ) =  ~ 1-I zv (F) (1.10) 

Then the main result of the cluster expansion that is needed in the present 
paper can be stated as follows: 

P r o p o s i t i o n  1.1. Assume that there exists a constant ct~ [0, 1) 
such that 

u*aV 
zv (F)~<exp[-231Fl(1-~)] VFe~fv 

Then there exists flo = flo(Ct) such that for all fl>--flo the logarithm of the 
partition function Z(V, U ~ + ) can be written as 

log [Z(V,U or, + ) ] =  ~ Ou~v'+(A) 
A ~ V  

where the coefficients ~u~,'. +(A) satisfy the following two basic properties: 
(1) 

�9 ve"+(A)=qS+(A) i f  63extA c V 
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where r is the coefficient associated to the set A c V when the 
boundary coupling U ~ is identically equal to one; and (2) for all A c V, 
IAI >_-2, 

I</,v~'" +(A)I ~<exp{-2(1 -c t )  [/3-/30] d(A)} 

I~ v~,. + ( {x} )1 ~ exp{ - 8(1 - ~) [fl -/3o-1 } 

where, for all connected (in the sense of subgraphs of the graph Z 2) A c V, 
d(A) is the length of the smallest connected set of bonds from / 1 -  {all 
bonds in V that separate at least one site in A } containing all the bonds 
separating sites in 0i,,A from sites in Oex, A. If A is not connected, 
d(A)= + ~ .  

1.3. Surface Tension and Wulf f  Shape 

We conclude our short review of the Ising model by recalling the 
definition of the surface tension zp(n) and of the associated Wulff shape. 
Again we follow the basic reference [4]. 

Let us fix a direction n e S  ~ (S ~ being the unit circle) and let us define 
the boundary condition r" as follows: 

t"(x)--+l  if ( x , n ) > 0  

t"(x) = - 1 otherwise 

where (x, n) denotes the usual scalar product in R 2. 
Let also VN.M be the rectangle {xeZ2 ;  --N<~xl <~N; - M ~ x 2  <~M}. 

Then we define the surface tension with respect to a surface orthogonal to 
the direction n, ra(n), as 

rp (n )=  lim lim - - - - - - : 1  (Z(VN.M, t")~ (1.11) 
N-~ M--oo fld(N, n j l ~  \Z(VN.M, + ) /  

where d(N, n) is the length of the segment 

{x; (x, n ) = 0 ,  --N<~x, <~ N} 

We will simply write rp to denote the surface tension associated to the 
direction n = (1, 0). 

For a proof of the existence of the limit (l.11 ) when/3 is large enough 
see Theorem 1.15 in ref. 4. 

We now define the Wulff shape W c  R 2 as 

W= {xeR2;  [(x, n)l ~< 2z.(n) Vn} (1.12) 



1190 Martinelli 

where the constant 2 is chosen in such a way that the area of W is equal 
to 1. The following fundamental result has been proved in ref. 4 (see also 
ref. 22) : 

T h e o r e m  1.1. Let for any closed, piecewise smooth curve 7 in R ~, 
the Wulff functional W~(y) on 7 be given by 

W~(~,)= f~ dsr~(b(s)) 
where n(s) is the normal vector at the point s on the curve ~. Then, if we 
denote by 0W the closed curve encircling the Wulff shape W, we have 

W,(~,)>~ W~(~W) 

for any closed curve ~, which encloses an area equal to one, and equality 
holds iff ), is a translate of the curve OIV. 

1.3. A Class of Block-Glauber Dynamics for the Ising Model  

In this section we define, for a given finite set V c  Z 2, boundary condi- 
tion ~ e s and boundary coupling U ~V, a class of Markov processes on 
12 v which are all reversible with respect to the Gibbs measure /~" ' "L 

Although the main object of study in this work is any standard (e.g., 
Metropolis or heath bath single-spin-flip Markov process, reversible with 
respect to the Gibbs measure of the Ising model, we found it very con- 
venient to introduce, as a technical tool, auxiliary Markov processes for 
which, in each updating of the dynamics, a whole collection of dynamical 
variables [i.e., spins av(X)] are changed instead of just one. Each one of 
these auxiliary Markov processes will be indexed by a certain covering of 
the set V by blocks (i.e., subset of V) and at a given updating only the spins 
inside a particular block will be changed. 

More precisely, let {Qi}i= l ..... be a covering of V and let 

U~ y ) =  1 if (x, y)~OQi\OV 
(1.13) 

U"e'(x, y)= UOV(x, y) if ( X ,  y)E63Qi~t3v 

Then we define the generator L IQ'I ' ' 'U" of the Markov process trle'l '~'v"' 
indexed by the covering {Qi}i= J ..... by 

(Ll~ (trv)=~ ~ I~."~176 [f(a"v)-f(av)] (1.14) 
i qEK'dO~ 

where (Tav) denotes the configuration in f2z: equal to z outside V and to 
~rv inside V, while ~r~, is the configuration in f2v equal to q in Qi and to 
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av\e, in V\Qi.  Most of the time we will refer to the Markov process 
generated by L ~e'l'~'Ue'' as the {Q;}-dynamics. 

A concrete way to construct the {Qi}-dynamics starting from a 
configuration a=-av is to choose with rate n (n is the cardinality of 
the covering) a particular element Q,. of the covering and to replace the 
restriction to ~,- of the configuration or with a configuration q ~ (2q, with 
probability p~ e'a"l(rl). 

The particular case in which the elements Q~ of the covering are 
the sites x of the set V is known in the literature as the heat bath process 
(HB-dynamics in the sequel) and it is a particular example of a Glauber 
dynamics for the lsing model, that is, a Markov process on -Qv with 
generator L ~'v''~ of the form 

(L"U""f) ( a v ) =  ~ ~ c~tr""(av, a) [ f ( a ~ : ~ ) - f ( a v ) ]  (1.15) 
x ~ V  a ~ { - - l , + l }  

where a ..... is obtained from av by substituting the value av(X) with a and | ,  

the jump rates c~: v""(a v, a) satisfy the detailed balance condition 

u,w. ~, c~. u ~' #v  la~.,) (av, a ) -  v," . . . . . . . .  ~ ~,v~", .~.~ - P v  ta V ,c,. lav  , av (X) )  (1.16) 

and a short-range condition 

~'u~'(a v, a) ~'u'w" 
C X =c,. tqv, a) if a v ( y )  qv(Y)  Vd[x-YdJ<~R 

for some finite R. 
As it is easy to check, the {Q~}-dynamics is a (continuous-time) 

Markov chain on /2  v, reversible with respect to the Gibbs measure p uv""'~ 
in other words, L {r is symmetric in the Hilbert space L2(12v, ape ~ u,'~. ) 
with real nonpositive eigenvalues 

0 = 20( { Q;}, ~, U ov ) > - ).t ( {Q, }, r, U "V) >1 ...  

/> -).~({Q~}, r, uev);  k = 2  ~vl 

The absolute value of the first negative eigenvalue, 2~ ({Q~}, r, UOV), will be 
of special value for us and it will be denoted by gapv({Q~}, r, U or) or by 
gapv(HB, r, U or) if the dynamics under consideration is the heat-bath 
dynamics. 

The following .variational characterization of the gap will be par- 
ticularly useful in the sequel. Let, for a n y f e  L2(f2v, ~e~,, dpv " ), g ( f  f )  be the 
Dirichlet form associated to the generator LIq'l'*'v"v: 

U ?V r 
d e ( f , f ) = � 8 9  Z Z #v  " ( a v ) U ~ : Q " ' ' " ' ( n ) [ f ( a q v ) - f ( a v ) ]  2 (1.17) 

i ol" q~g'2Qt 



1192 Martinelli 

Then 

,g'(f, f )  gapv({Q,} )  = inf (1.18) 
f ~  Lll.Ov,dplV'l'.r) Vat( f )  

where 

Var( f )  = �89 ~ #v ' (aj #~,L~(r/) I f ( a ) - f ( r / ) ]  z 
O',q 

Remark .  Using the above variational characterization of the gap, it 
is very easy to check that, if we consider a general Glauber dynamics 
defined as in (1.15) with jump rates bounded above and below uniformly 
in a v and in V, then the corresponding gap can be bounded from above 
and from below by gap v (HB,  ~, U ev) multiplied by two suitable constants. 

The following simple estimate, which follows from an elementary L 2 
consideration, illustrates the role played by the gap({Qj}, r, U ~v) in the 
approach to the invariant measure/~v.~ of the distribution P~v~ of 
the {Qi}-dynamics at time t starting from r/v at time t = 0 :  

elo,  l.~.u~v ~,,~.G I ~<exp[- /gap({a , .} ,  z, UeV)] (1.19) 
v.,,. 2 [p ~v'u"' (r/v)] ,/2 

where, for two arbitrary probability measures v and p on 12v, [Iv-#ll 
denotes their variation distance. 

Remark .  It is worthwhile to observe that (1.19) can be a very bad 
~- U,~t'.~, v ) ] l l Z  estimate since the denominator LP v ' tr/ is of order e x p ( -  cfll VI ) for 

some constant r There are situations, for example, when fl is smaller than 
U & e  "r - -  1t2 the critical value fl~, in which the factor [/~v ' (r/v)] in (1.19) can be 

replaced by eI V I for some constant c (see, e.g., refs. 28, 18, and 19). 
However, in a phase transition regime, fl > fl<, the gap can be very small, 
something like e x p ( - c L )  if V is a square of side L with open boundary 
conditions (see Section 4), and therefore the possible improvement in the 
denominator from exp( - cfll VI ) to some negative power of I VI is negligible. 

1.4. Coupling for the {Qi} Dynamics 

We conclude this preparatory section by discussing a useful coupling 
for the {Qi}-dynamics that will be essential in the forthcoming sections. 

Let, for any finite set V, ~1,  ~c21 ..... tcNI be N~<2 I~~ vl boundary condi- 
,rill .r(2) t i N )  tions on the external boundary of V, and let v v . . . . . .  be the unique 

invariant probability measure on (O v) N (N copies of f2v) of the following 
ergodic Markov process: 



2D Dynamical Ising Model 1193 

(i) With rate IV[ one chooses a site x e  V and, given x, a r andom 
number  Cxe [0, 1] with a uniform distr ibution:  

(1.20) 

(ii) For  k = 1 ..... N the value of the spin at x in the k th  component  of 
the initial configuration O r -  {a~ ~ . . .a~m},  a ~ Q v ,  is replaced by +1  if 

~x ~ / ~  {.,-) ' t + l )  (1.21) 

and by - 1  if the opposite inequality holds. Here U ~{'1 is defined as in 
(1.13) but with Qi replaced by {x}. 

The above algori thm is of course nothing more than an explicit way 
to realize on a c o m m o n  probabil i ty space the FIB-dynamics in V with 
different boundary  conditions r ('), 3 (2) ..... r (N). 

Using this observation,  one can explicitly check that the measure 
,,,) ,(.,,.....,,N, enjoys the following propert ies:  

vv"') . . . . . .  e2) ,~-,,tr/~1),..., Ck - ~), r/(k), r/(k+ ~ ),..., q~u)) =/~ uf,',(e~))(r/(k) ) 
11} ( k - i )  

,% ~rl."... ,,., ( 1.22 ) 

v~'~"P~'~u'(rllk~<~rllJl)= 1 if r t k~<r  {j~ (1.23) 

Given now a finite set V, a boundary  condit ion r, and a covering {Q~}'/= ~, 
let, for each i -  1 ..... n, ~.{11, 3{21 ..... t {N) be an arbi t rary enumerat ion of all the 
possible boundary  conditions on the external boundary  of Q~ which agree 
with r on O~,Q~ n O,xt V, and let 

-gill T[21 gIN) V Q ~  VQ, . . . . . .  

Using the measures vo~, we can mimick the algori thm (1.20), (1.21), to 
realize on a common  probabil i ty space the Markov  processes a: ~ 
starting from an arbi t rary initial condit ion av as follows: 

(a) With rate n (n is the cardinality of the covering) we choose one 
of the Q;. 

( 1.24) 

(b) For  all k " 1 ..... N, the configurations av which agree with ~lk~ on 
,I ~k~ qtkl the external boundary  of Q~ are updated to a V , ~ ~o , ,  and the joint 

probabil i ty of qt~, ~[2) . . . . .  /~(N) is  �9 ( l)  ve, t q ,qt2~ ..... qtu~): 

(1.25) 
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It is clear that, because of (1.22) above, (a) and (b) give the right 
law for the evolution of any given initial configuration a v. Moreover, 
because of (1.23), it also follows that any ordered set of initial conditions 

~< a 2, ~< <~ try. will remain ordered for any future time t. We will refer O" V - . .  

to this last property as monotonicity in the initial configuration. 

2. GEOMETRIC B O U N D S  ON THE GAP 

In this section we establish two basic estimates on the gap which, 
besides being interesting by themselves, will play a crucial role in the deter- 
mination of the exact asymptotics in the thermodynamic limit of the gap of 
the HB-dynamics in a finite square with open boundary conditions. The 
first estimate relates gapv(HB, r, U 'w) to gapt1({Qi}, z, U ~v) when V is a 
rectangle Vu, M, 

VN.M= {x; --N<<.XL <~N; - M  <~x2 <~M} 

with, say, M~< N and the covering {Q~} consists of rectangles 

Q~= xEZ2;  -N<<.xl<~N;i~<~x2<~(i+2) 

with 1/2 and 2M/l integers, i = - 2M/t ..... 2 M / l -  2. The estimate shows that 
the ratio 

gapv(HB, z, U "~) 
gapz({Qi}, r, U 'w) 

is bounded from below by a suitable exponential of the short side I. More 
precisely : 

T h e o r e m  2.1. Let V and {Qi} be as above. Then for any boundary 
coupling U '~v and any boundary condition z we have 

1 ex ( -4 f l )  
gapv(HB, r, U'W) >~ - 

21Qil exp(-4/3)  + exp(+4fl)  

x exp[ -4 /3 ( /+  1)] gapv( {Qi}, r, u 'w) 

R e m a r k .  The above theorem remains valid also if the covering of 
the set V consists of rectangles Qi with longest side smaller than that of 
Vu.M. However, for reasons that will become clear in the next section, the 
above choice of the covering is very sensible in the low-temperature regime. 
It will also become clear at the end of the proof of the theorem that our 
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method allows one to relate the gap of the HB-dynamics to that of the 
{Qi}-dynamics for arbitrary geometric shapes of the elements of the 
covering. This generality is, however, not needed in the present paper. 

As a corollary we obtain, in the same setting as above, that 
gapv(HB, r, U ~v) is not smaller than a negative exponential of the shortest 
side M. More precisely we have: 

C o r o l l a r y  2.1. For any boundary coupling U ~v and any boundary 
condition z we have 

1 exp( -4f l )  -4 f l (2M + l ) ]  
gapv(HB, z, U ~v) >1 21V---] exp( -4 f l )  + exp(+4fl)  exp[ 

Proof of  the Corollary. Let us take in Theorem 2.1 the shortest side 1 
of the elements Qi of the covering equal to 2M so that the covering consists 
of just the rectangle VN.M itself. Then the generator L ~Q' ~'3" u,', restricted to 
the space of functions of mean zero (i.e., orthogonal to the constant func- 
tions) becomes minus the identity, so that gapv({Q~}, z, U ~') = 1, and the 
corollary follows from Theorem 2.1. 

R e m a r k .  The estimate described in the corollary is a very bad one 
for temperatures above the critical one (that is, fl < fl,), since in this case 
it has been recently proved by Martinelli et all 2~ that the gap is bounded 
away from zero uniformly in N and M. However, at low temperature, when 
the infinite-volume dynamics is not ergodic, it gives the right dependence 
on the size of the set VN.M, namely a negative exponential of the surface 
and not of the volume I VN.M[, but the constant in the exponential is wrong 
by a factor 2 even in the limit fl---, ~ .  A more precise bound will be dis- 
cussed in the next section. 

The proof of the corollary represents also the first, actually rather 
trivial, example of the role played by the {Q;}-dynamics: in an approach to 
a gap estimate this latter may be considerably simpler than the single-spin 
dynamics. In particular, one may try to attack the problem of finding a 
lower bound on the gap of the HB-dynamics by first proving lower bounds 
on the gap of the {Q~}-dynamics and then, using Theorem 2.1 above, 
transfer the bound to the HB-dynamics. This idea played an important role 
in the analysis of the approach to equilibrium in general Glauber dynamics 
in the one-phase region (see, e.g, refs. 8, 28, and 18). However, its applica- 
tion in the phase transition region seems to be new. 

Proof of  Theorem 2.1. The proof is an application in our context of 
some geometric techniques developed a few years ago in order to bound 
from below the gap of symmetric Markov chains on complicated graphs 
(see, e.g., refs. 14, 11, 12, 27, and 5). We will use in particular some beauti- 

S22/76/5-6-7 
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ful ideas introduced by Jerrum and Sinclair in their study of rapid mixing 
properties of Markov  chains arising in some hard computa t ional  problems. 
The way these techniques apply to spin dynamics like the Glauber  
dynamics was discussed for the first time in some unpublished notes of 
mine and used recently, in a slightly different form by Schonmann in his 
study of metastabil i ty for the lsing model. 1241 

In what follows we will omit  for simplicity in all the notat ion the 
boundary  condit ion r, the boundary  coupling U ',v, and the volume V. 

�9 U TM r " Thus, for example,  the Gibbs  measure p v " w]ll become p, the condit ional 
Gibbs  measure on Qi, ~:o,.(~1,.~..,  /~o, ~,tJ, po,(~/), and similarly for the generators  
of the HB- and {Qi}-dynamics together with their gaps. 

We start by introducing the set of canonical paths in [2v between 
configurations a and a '  with a :/: a ' ,  which are connected by just one single 
j ump  of the {Qi}-dynamics,  that is, a ' = a "  for some i and some r/~f2Q,. 
We adopt  the convention that, if the a, a '  can be connected by the updat-  
ing either Q,. or Q~+ ~, due to their mutual  overlap, then we think of a '  as 
arising from the updat ing of Q~. 

Let us first order  the sites in each rectangle Q~ as follows: 

x < y  iff x ~ < y ~  or x~=),~ and x2<y2 

Given now a~f2v  and q e f2Q,, we define the path ~,(a, a") as the sequence 
of configurations obtained from a by adjusting one by one, in increasing 
order, the values of its spins in Qi to those of the spins of or". More  
precisely, if x~ ..... x,, are the sites in Qi, ordered as above, such that  
a(x~)~a'l(xi), then we define 7(a, a " ) =  { a ~  where a i, i =  1 ..... n, is 
the configuration equal to 

ai(x)=a"(x)  iff x<~xi 
(2.1) 

ai(x) = a (x)  iff -~." > "~"i 

and a ~ = a. 
Next, for any allowed transition of the HB-dynamics  

#-+~'" ,  x~Qi ,  a =  - # ( x )  

we set 

e = (~, ~x..) 
(2.2) 

Q(e) = #(if) #~(a)  

and we say that the transition e belongs to the canonical path y, e ~ ~ if, for 
some index i, (~, #x.,) = (ai, ~ + ,  ). Finally, we define the constant  p as 

p = s u p  ~" p(tr)p~,(q) (2.3) 
i , e  o , q  Q(e) 
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Then we have: 

1 1 
gapv( HB) > ~ - - -  gapv( { Q~} ) (2.4) 

21Q~I p 

Although the proof of (2.4) can be found in ref. 27, we reproduce it below 
because of its simplicity. 

Using the variational principle for anyfeL2(t2v, d#), we have 

1 a Var(f)<~gapv({Q~})-' ~-2 ~#(a) #e,(q) [f(a'l)- f(a)] 2 
a , i  q 

{ =gapv({Q,})-' 52  2#(a) / l~ , (q )  2 [ f (aY)- f (a j - ' )  
a . i  q j =  I " ' n  

(2.5) 

where y(a, a " ) =  {a~ ~ ...a"} is the canonical path going from a to a". 
Using the Schwartz inequality, the fact that the length n of the path 

is smaller than [Qi], and the definition of p, we can bound from above the 
r.h.s, of (2.5) by 

gapv({Q,})- '  plQ,I �89 2 ~ #(a)p.~(a) { f (a ' " ) - f (a ) ]  2 
tT, i x E Q i  a E { - - I , I }  

~< 2 gapv({Q,})- '  plQil g n , ( f  f )  (2.6) 

where gab ( f , f )  is the Dirichlet form of the HB-dynamics and the factor 2 
in the first inequality comes from the fact that most of the sites belong to 
two elements of the covering. Thus, if we combine (2.5) with (2.6) and 
(1.18), we get 

gapv({Qi}) gapv(HB)/> 
2pIQi[ 

and in order prove the theorem, we only need to estimate from above the 
constant p by 

exp(4fl) + exp(-4fl)  
p ~< exp[4fl(/+ I)] (2.7) 

exp(-4fl)  

uniformly in the boundary condition r and in the bounary coupling U av. 
Apparently this is not an easy problem since we have to count how 

many canonical paths use a given allowed transition e = ( # ,  6x'~). Is is 
precisely at this stage that Jerrum and Sinclair's lovely ideas become 
essential. 
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Given a transition e = (& #"'"), we define an injective �9 mapping from 
the set of all the canonical paths that use the transition e, F(e), to Ov as 
follows : 

O(y(a, a")) (y) = o(y) V),EQi, y < x  

O(7(a,a"))(y)=cr"(y) YyeQ,, y>>.x (2.8) 

O(~,(a,a"))(y)=a(y) VyCQ, 

where the index i labels the rectangle associated to the path y(a, a"). 
It is clear that �9 is injective. In fact the knowledge of the transition e, 

that is, of x and #, and of ~ = O(~,(a, a")) allow us to reconstruct com- 
pletely the initial and final configurations a and a" and thus the path itself, 
simply by observing that, for example, 

a(y)=ff(y) YyCQ, 

a ( y ) =  if(y) v),sQ,, 

a ( y ) =  ~(y) VyeQ,, 

and similarly for a". 

y >1 x (2.9) 

y < x  

1 
o 0 > / - -  ~ ( 2 . 1 0 )  # o , ( ( 7 ) )  Q(e) /~(a)/~e,(q) 

CO 

Then we have 

p<~Co (2.11) 

Using (2.10), we can in fact estimate the r.h.s, of (2.3) by 

c osup ~ /~ , (0(7))  (2.12) 
e , i  "~'E F ( e l  

Since the map �9 is injective and /~ is a probability measure, the sum in 
(2.12) is not greater than one and (2.11) follows. 

In order to estimate the constant co, let, for x e  Qi, d.,. be the set of 
bonds in Qi which separates sites in Qi smaller than or equal to x from 
sites in Qi larger than x. Clearly, by construction, 0.,. consists of two verti- 
cal segments joined by a single horizontal bond h at distance 1/2 from x 
and placed below it if xt/> - N +  1, and by a single vertical segment plus 
a horizontal bond as above if x~ = - N .  Let also, for any pair configura- 
tions try, a,_ which agree outside Q~, H,~(tr~, a,_) be the interaction through 

Let now Co be the smallest constant such that for any canonical path 
),(a, a 's) in F(e) the following bound holds" 
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0.,. of a configuration aE[2v which is equal to at (a_,) to the left (right) of 
c3,.. More precisely 

H~,(a~,a,_)= - ~, [ a l ( y ) a z ( z ) - l ]  (2.13) 
y ~ < . x - <  z 

.'.'~ Q , .  I l y -  =11 = I 

Clearly IH,~(a~, a2)l is bounded from above by 2(l+ 1). Then, by direct 
inspection, 

/t~?,(~(7) )/~(ff) = exp{ -/3fiH,~(a, a) + H,~,(a", a") 

- H,~,(6, 6) - H,~, (~(7), 0(7))]  } (2.14) 

for any boundary condition r and boundary coupling U ev. In turn (2.14), 
together with (2.13) and the observation that 

exp(-4fl)  
~(a)>~ Vx, ~, r, U 'v  

exp(-4/3) + exp(+4/3) 

implies that the l.h.s, of (2.14) is smaller than 

exp(4fl) + exp(-4/3) 
exp[4fl(/+ 1)]/t~(a) (2.15) 

exp( - 4/3) 

that is, 

/.t~,(r Q(e) >1 exp(4fl)+ exp(-4fl)  exp[4fl(/+ 1)]/~(a) F~?,(r/) (2.16) 
exp(-4/3) 

Thus the constant Co can be taken equal to 

exp(4fl) + exp(-4fl)  
exp[4fl(/+ 1)] Co- exp(-4fl)  

Using (2.7) and, (2.11), the theorem follows. 

Remark .  It is amusing to observe that, if one applies the above con- 
struction to the one-dimensional case for which the set d,- consists of just 
one bond, Ho,(a.,  a2) can be bounded by a constant independent of a~, az 
and of the dimengion of V, even if the energy (1.1) of a configuration av 
is replaced by a more general expression like 

H ( a v ) = - � 8 9  ~ J ( I r x - Y l l ) a , . ( x ) a v ( y ) + b . c .  
X 1"~1" 
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provided that the long-range potential J(llx-Yll)  decays faster than 
IIx-Yl1-2+~ for some e>0 .  Therefore in this case the gap of the corre- 
sponding heat bath dynamics in a segment of length L in Z has a lower 
bound which is only proportional to L ~ without any negative exponential 
of L. 

On the other hand, it is known that a long-range potential J ( l lx-Yl l  ) 
with a fast decay as above is not able to induce any phase transition, the 
reason being that the energy between two semiinfinite lines is finite 
uniformly in the spin configuration. 

Thus, in some sense, the above geometric construction is able to 
capture, at least at the level of the exponential, some (but certainly not all) 
of the physical aspects of the presence (or of the absence) of a phase 
transition in the Ising model at low temperature. 

3. A LOWER B O U N D  ON THE GAP W I T H  
PLUS B O U N D A R Y  C O N D I T I O N S  A N D  ITS APPLICATION 

In this section we consider the HB-dynamics in a square V= VL: 

VL= {x~ZZ; O<~xi~L; i=  1, 2} 

with full plus boundary conditions, that is, 

r ( x ) = + l  Vx~Z 2 

U'~VL(x, y) = + 1 V(x, y) ~ 0 VL 

and very large/L 
We show that, due precisely to the presence of the plus boundary 

conditions, the gap of the HB-dynamics is much larger, as L --* oo, than its 
value with open boundary conditions (see also the discussion in the intro- 
duction). As a simple consequence, we show that the equal site time 
correlations of the infinite-volume process started in the plus phase decay 
faster than any inverse power of the time. 

Before stating and discussing our main result, let us fix a few more 
convenient notations. We will denote by ( + )  and ( - )  the two extreme 
configurations in I2 vL identically equal to plus and minus one, respectively, 
and, for any rectangle R, by ~,:.,.,3.~, PR , the Gibbs measure on R with the 
boundary conditions ~l, r2, r3, r4 on the external boundary of its four sides 
ordered clockwise starting from the bottom side. We use the usual conven- 
tion that, if one of the configurations ri is identically equal to + 1 or - 1, 
then we replace it by a plus or a minus sign. Thus, for example, z~, + ,  - ,  
+ means r, boundary conditions on the bottom side, plus boundary con- 
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ditions on the vertical ones, and minus boundary condition on the top one. 
Whenever confusion does not arise we will also omit the subscript V in the 
notation tr v. 

We finally denote by /a + the infinite-volume Gibbs state obtained as 
the limit as L--,  ~ of finite-volume Gibbs states p ~ with plus boundary 
conditions, by m*(fl)=/~ + (a(0)) the spontaneous magnetization, and by tr, 
the infinite-volume heat bath dynamics started from the (infinite-volume) 
configuration tr (see ref. 13 for the existence of such processes). 

We can now state the main results: 

T h e o r e m  3 . 1 .  Let ~ e (0, 1/2) be given. Then there exist /~o < + oo 
and C < + ~ such that for any/3 i>/30 and any integer L 

gap vL (HB, + )/> exp( - CflL l/z+~') 

T h e o r e m  3.2. Let c~e [0, 2) be given. Then there exist rio< + o r  
and C < + oo such that for any/3 >//30 

0<~ I dp+(tr) tr(0) E ( a , ( 0 ) ) -  Em*(/3)] ~- 

~ < C e x p { - ( l o g ( t ) ]  ~} Vt 

Proof of Theorem 3.1. Let I=2[L ~/2+~] and let us suppose, 
without loss of generality, that N -  2L/l-  1 is an integer; for i = 1 ..... N, we 
define Qt to be the rectangle 

Qi= xE VL ;O<~x~ <~L, (i--1)~-..<.y2-..<(i+l) 

Then, using Theorem 2.1, we have that 

1 exp(-4/3)  
gapvL(HB, + ) > ~ - -  

IQ,I e x p ( - 4 f l )  + exp(+4B) 

x e x p [ - 4 B ( / +  1 )] gapvL({ Q,}, + )  (3.1) 

It remains to show that the {Qi}-dynamics has a "large" gap, where "large" 
means, for example, larger than e x p ( - L  c' +~.~/2). 

To prove this result, we will show that, with very large probability, 
under the coupling, for the { Qi}-dynamics described at the end of Section 1, 
the two extreme configurations ( + )  and ( - )  become identical in a time 
smaller than exp(L I' +~v2). 

The intuitive reason for that, which also explains our apparently 
strange choice of the length l of the short side of Qi, is the following. Let 
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us suppose that we start with the two extreme configurations and that we 
update one after the other in increasing order of i the rectangles Qi. In the 
first updating of Q~ we have to replace (+)Q, and ( - ) o ,  with two con- 

+ and r/~, distributed according to Pt2, PQ~ , figurations r/o~ +'+'+'+ and + '+ ' - ' +  
respectively. It is a relatively easy matter to show (see Proposition 3.1 
below) that, for large enough/~, due to our choice of ! and to the fact that 
in two dimensions the fluctuations of an interface separating plus spins 
from minus spins are of the order of the square root of the length of the 
interface, it is possible to couple the two m e a s u r e s  ]~91' + '  + '  + ,  ~~QI' + '  - '  + in 
such a way that, with probability much larger than 1 - I / N ,  the two 
configurations r/~, and q~, are identical in a large portion of Q~, e.g., for 
all x e Q~ with xz <~ 31/4, and in particular on the external boundary of the 
bottom side of Q2. Moreover, with large probability, both r/~, and q~, 
will be mostly + 1 on the external boundary of the bottom side of Q2. Thus 
the second updating in Q2 will be very similar to the first one in Q~ with 
the exception that now the boundary conditions on the external boundary 
of the bottom side of Q2 will not be identically equal to + but only 
approximately. 

As we will show below, this fact, with probability much larger than 
1 - l/N, does not really matter and one can, at least in a first approxima- 
tion, consider the + boundary conditions also on the bottom side of Q2. 
In this approximation the second updating will be statistically equal to the 
first one and, with large probability, it will force ( + ) ~ ,  and ( - ) ' ~ ,  to 
agree also in 3/4 of Q2 without introducing any new discrepancy .between 
them in the previous region of agreement, 

{ x E Q j ;  x2-N< 3/} 

In such a way, after the first two updatings, the evolutes of ( + )  and ( - )  
will agree in the set 

{x~ VL; 0~<x2~<45-1} 

By iterating this procedure N times, we can glue together ( + ) and ( - )  in 
N steps with a probability of order one. 

Remark. Thus our choice of the short side 1 is a compromize 
between the requirement of being as small as possible because of 
Theorem 2.1 and the requirement of being much larger than the square root 
of L, which is the order of magnitude of the typical fluctuations of an inter- 
face of length L in two dimensions. 
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Since the probability of not having within time t a sequence of N 
updatings exactly in the order needed above is roughly of order 

e x p ( - N - N N ) , ~ l  if, e.g., t=exp(L(l+~)/2), L>>I 

we can conclude that the time the { Q,. }-dynamics needs to relax to equi- 
librium should not be larger than exp(L (~ +,)/2) for L large enough. 

Let us start with the technicalities. Let R be the rectangle 

R =  {x~ Z2; O<~xl <~Ll; O<~x,_<~L2} 

with L l >/L2/> L 11/2 + ~. 

P r o p o s i t i o n  3.1. Let m > 0  and e~(0, 1/2) be given. Then there 
exists flo = [3o(e, m) independent of R such that for all fl~> fl0 and all x~ R 
with x2 ~< 3/4L~, we have 

!a -~" + '  +" + ( a ( x )  = 1 ) - ~ ~ '  +" - "  + ( a ( x )  = 1 ) ~< e x p (  - m L ~  ~) 

The above result will actually be given in a greater generality than that 
required here; see Proposition 4.1. The proof of Proposition 4.1 has been 
collected with some similar results for the Ising model in the Appendix. 

The second result that we need is an estimate on the probability of not 
seeing within time t a sequence of updatings of the {Q~}-dynamics with the 
correct order described above. 

L e m r n a  3 . 1 .  Let us call SN--{tl ..... tN}, N = 2 L / l - 1 ,  an ordered 
sequence of updatings if for any i=  1 ..... N: (i) at time I i the dynamics 
updates the rectangle Q;; (ii) there are no updatings between times t~ 
and li+ 1" 

Then, for any N large enough (independent of t) 

P(there exists no ordered sequence in [0, t ] )~<exp(  tN~ -u-) 

Proof. Given that t,,..., tu are N consecutive updatings, the proba- 
bility that SN = {t~ ..... tu} is an ordered sequence is clearly N -N since the 
probability of choosing a specific rectangle is 1/N. Let now v, denote the 
total number of updatings within time t. By construction the process v, is 
a Poisson process of parameter tN. Therefore we can estimate the proba- 
bility appearing in the lemma by 

822/76/5-6-8 
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P(there exists no ordered sequence in [0, t l )  

+oo e - ,U( tN)k  
~< ~ k! ( 1 - - N - N )  tk/Nl 

k = 0  

<<. 2e - tNtl - (i - N-N} I/N] 

which is smaller, for N large enough, than 

(3.3) 

Let now SN--= {tl ..... tm} be a fixed ordered sequence with tl = 0, let ale'}' + 
be the evolute at time ti of the initial configuration ~, let R~ be the rectangle 

Ri=fxr Q,;x2<~(i+l)' [~]} 
and let, for i =  1 ..... N -  1, A;(x), Ag, be the events 

A,(x) = {( + )},Q'~" +(x) ~ ( - ) I ,  Q'~' +(x)} 

A i =  U A i ( x )  
{xe Ri} 

aN= U ANIX) 

(3.4) 

and let q~= P(A~). Then we have 

q . +  l <~ q .  + P ( A . +  l c~ A,~,) 

N - - I  

<~ ~ P(A.+,c~A~.)+P(AI) (3.5) 

where A,] is the complement set of A,. 
Then the term P(A,+1 c~A~,) in the r.h.s, of (3.5) can be estimated by 

P(A,+  t c~ A~) 

Y~ u;(a)e(A.+,Ix) 
X E R n + I t ' ~ Q n + I  

a ~ ~QV 

Y n 

(3.6) 
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In the derivation of (3.6) we used the fact that at time t,+~ we update only 
the set Q,4-~ and that, under the coupling described in Section 1.4, for any 
time t and any configuration a, (-)~o,).+ ~< a~Q,), + <~ (+)~o,) .+ 

In turn, if we denote by E the expectation over the random configura- 
tion a~, ~ then a given term in the sum appearing in the r.h.s, of (3.6) 
can be estimated from above by 

o{Qi} "+ + . ( + ) ~ Q i } ' + . + .  , 
q- t n . /~v ( a )  E [ ~ o . + ,  " ( r l t x  J = 1 

o{Qi}" + a- I - -  ){Qi} "+ 
--U~:+ t . . . . . .  "+(q(x) = 1)3 

o{Qi}.  + + .  4 - .  
= E ~ ( a )  f ~ : §  +(n(x) = 1) 

a{Oi} ,+  + ,  - ,  

- la+(a)El t '~ :+,  +(r/(x) = 1)] (3.7) 

since (+)~~ and (-)~~ are, respectively, identically equal to plus 
one and minus one on the external boundary of the top of Q,+ 1 because 
the sequence SN is ordered. 

Let us consider the term 

o{Oi}.+. + .  + .  + 
/.( + (a) E/.td:+, (q(x)= I) (3.8) 

o E f 2  v 

Since the {Qi}-dynamics is reversible with respect t o / ~  (a), the distribu- 
tion of a~. ~ given that a is distributed according to / ~ ( a ) ,  will of 
course be again/z~ (a). Therefore (3.8) will be equal to 

Z ~ +  o, + ,  + , +  (a)/aQ.+, (q(x) I) 
o c t ' 2  v 

-<< Y~ + ' + ' + "  + ~ " + '  + ' +  (,1(x) = I )  

o ~ l ' 2 R n + l U Q n + l  

(3.9) 

where we used once more the monotonicity (1.5). 
4-, + ,  4-, 4- 

B y  the DLR property of the Gibbs measure #s.+~,~Q.+,, the r.h.s, of 
(3.9) is just 

+ , + , 4 - , +  IZ R.+,vQ.+, (a(X) = 1) (3.10) 

Similarly we obtain that the term 

o{Qi},  + + , - - , +  y. . :  (~) F..~:+, 
O E K'2 v 

(,7(x) = I) 
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is bounded from below by 

+ , + , - , +  /~R,+~uQ,+,(Q(-)=1) (3.11) 

In conclusion, using (3.10), (3.11), and Proposit ion (3.1), we get that, for 
any n, the r.h.s, of (3.6) is bounded from above by 

+ . + , + . 4 -  -1 - , 4 - . - - . 4 -  /~ R,+, v Q,., (O'(X) = 1 ) - -p  R.+, ~Q,+ , (tr(X) = 1)<.L2exp( - -mL z~) (3.12) 

for a suitable constant m - m ( f l )  which diverges as fl ~ oo. Similarly one 
estimates P( A ~ ). 

Therefore we get 

qu <~ NLZ exp( - m L  z~) (3.13) 

We are now in a position to conclude the proof  of the theorem. 
Given a sequence S u -  {tl ..... tu} of updatings, we say that SN is a 

good sequence iff Su is ordered and the event A % occurred at the end of the 
sequence. Because of (3.13) we know that the probability that an ordered 
sequence is also a good sequence is larger than 

1 - NL 2 exp( - m L  2~') > �89 

for L large enough. Thus, using Lemma 3.1, we get that if T =  exp(U l +~l/z) 
and L is large enough, 

P(there exists a good sequence in [0, T ] )> /~  (3.14) 

We conclude by observation that, if there exists a good sequence in [0, t] ,  
then, by monotonici ty (see Section 1.4), the evolutes at the end of the 
sequence of ( + )  and of ( - )  will be identical. Therefore we can estimate 

P(( + )I Q'I'+ :/: ( - )I Q'I'+ ) by 

p ( ( + ) l o ,  l.+ :r ( _  ~0,1.+) <~ ( ~ ) [ , / r ] , ,  3 (3.15) 

which immediately implies that 

L )log( i ) gapvL({Q~}, + ) >~ T - t  log(3) = exp( - (1 +c)/2 3 (3.16) 

Clearly (3.16) together with (3.1) proves the theorem. 

Proof of  Theorem 3.2. The first inequality, namely 

0 ~< I d/~ + ( a ) a ( 0 )  E ( a , ( 0 ) ) -  [m*(f l ) ]  2 (3.17) 
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follows immediately from the FKG inequality applied to # § and the fact 
that the infinite-volume heat bath dynamics is reversible with respect 
to #+ 

In order to obtain the upper bound, we write the r.h.s, as 

f dp+(a) [a(0) + 1] E ( a , ( 0 ) ) -  [m*( f l ) ]2 -m*( f l )  (3.18) 

and we observe that, by the monotonicity (1.24), (1.25), for any L and 
any t, 

E(a,(O))<~E + + (a,(0)) (3.19) |"L, 

where E~L .+ denotes the expectation over the HB-dynamics in VL with 
plus boundary conditions starting from the configuration identically equal 
to plus one. 

In turn, the r.h.s, of (3.19) can be bounded above, using the estimate 
(I.19), by 

Ev+L.+ (a,(O))<~l~-~L(a(O))+exp[CflL2-t gap(HB, VL, + ) ]  (3.20) 

If we plug (3.19) into (3.18) and we use (3.20), we obtain that the r.h.s, of 
(3.17) is bounded above by 

[U +L(a(0)) - m*(fl)] [m*(fl) + 1 ] + 2 exp[CflL z - t gap(HB, V z, + )] 

(3.21) 

As is well known, 
+ 0 -.~ p vL ( a ( 0 ) ) -  m*(fl) ~< C~ exp(=mL)  (3.22) 

for any large enough fl, where C~ and m are suitable constants with m ~ ov 
a s  f l  - - .  oO. 

We now choose the size L depending on t as 

[ log(t) ]"  
L = L2C(a)flj  (3.23) 

where C(a) is the constant appearing in Theorem3.1 for the value 
e=  ( 2 - a ) / 2 a  and we apply Theorem 3.1 to get that the r.h.s, of (3.21) is 
bounded from above by 

[l~ (3.24) m L2C(~)/~_J ,/ exp \ 

for all fl large enough, where C2 is a suitable constant. 
Clearly (3.24) proves the theorem. 



1208 Martinelli 

4. A S Y M P T O T I C S  OF THE GAP W I T H  OPEN 
B O U N D A R Y  C O N D I T I O N S  

In this section we again consider the HB-dynamics in a square V -  V, 
of side L at very low temperature, but this time with open boundary condi- 
tions, that is, 

U~VL(x, y )=O V(x,y)~c3V L 

In this case the two extremal configurations, ( + )  and ( - ) ,  are the only 
absolute minima of the energy H~ and they are related one to the 
other by a global spin flip. 

We show that, due precisely to the above symmetry, the gap of 
the HB-dynamics is much smaller, as L ~ oo, than its value with plus 
boundary conditions. More precisely, we obtain that the gap is of the order 
of exp(-flzt3L), where zt~ is the surface tension defined in (1.11) with 
respect to an interface parallel to one of the coordinate axes. 

Since the proof of the main result of the present section (see 
Theorem4.1 below) will mimick as closely as possible the proof of 
Theorem 3.1, we will keep the same notation as Section 3 with the following 
modification. 

Let R be a rectangle and let us suppose that we have a boundary 
coupling U ~ which is constant on each of the four components of OR 
ordered clockwise starting from the bottom. Let us denote by 0 ~< 6i~< 1, 
i--  1,..., 4, the value of the boundary coupling on the ith side of R. Then we 
will write t-R"a'~'~2~2'~3~3'~4"~", to denote the corresponding Gibbs measure�9 on 
R with the boundary conditions z~, z2, z3, z4. As usual, if one the 6i is 
equal to one, it will be omitted in the notation, while if it is zero, the 
corresponding term 6~i  will be replaced by ~ .  Thus, for example, 
(z~, di+, ~ ,  6 + )  means z~ boundary conditions on the bottom side, plus 
boundary conditions on the vertical ones coupled to the interior of R by 
a constant boundary coupling equal to 6, and an open boundary condition 
on the top one. 

As in Section 3, whenever confusion does not arise, we will omit the 
subscript V in the notation trv. 

Let us now state the main result: 

T h e o r e m  4.1. Let e ~ (0, 1/4) be given. Then there exist tip < + oo 
and C < + oo such that for any fl/> tip and any integer L 

exp( - f l z a L  - CflL m +~) ~< gap vL(HB, ~Z~) ~< e x p ( - f l z ~ L  + CflL '/2 +~) 

Proof. Upper Bound. The idea behind the upper bound is very 
simple and intuitive: when the system starts from a typical configuration of 
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the Gibbs measure p~ it has a magnetization m approximately equal to 
either +m*(fl) or -m*(fl), where m*(fl) is the value of the spontaneous 
magnetization at inverse temperature fl in the infinite-volume limit. There- 
fore, in order to reach the equilibrium where the expected value of the 
magnetization is zero by symmetry, the process has to hit the set of 
configurations of zero magnetization. Since the probability that, starting 
at equilibrium, one has at a given time t zero magnetization is equal to 
l t ~ ( m = 0 ) ,  one expects the relaxation time to equilibrium, which is 
roughly the inverse of the gap, to be at least as large as the inverse of 
p~ (m = 0). This is actually correct and the argument, thanks to a basic 
result of Shiosman (see Theorem 4.2 below), gives a correct upper bound. 

Let us implement the above idea. Without a true loss of generality we 
may assume that L 2 is odd. We also denote by m(a) the total magnetiza- 
tion of the configuration a ~/2 v: 

m(o')= ~ o'(x) 
x E V  

and by ( -,- ) the scalar product in L2(t2v, d/a~). 
If we recall that the generator of the dynamics L ~ is self-adjoint on 

L'-(t2v, dp~), we get that 

(m;  exp(tL ~ )m ) 

~ e x p [  -gaprL(HB,  ~ ) t ]  (m;  m )  

~< L 4 exp[ - g a p  ~L (HB, ~ ) t ]  (4.1) 

since, by symmetry, (rn ; 1 ) = 0. 
On the other hand, again by symmetry, 

[exp(tL~ (a)= - [exp(tL~ ( -a )  (4.2) 

so that 

(m;exp(tL~ = 2  f d#~(a)m(a) [exp(tL~ (a) (4.3) 
Ja : re(a)>0 

If we denote by Tr176 the first hitting time of the set { re(a)< 0} for the 
HB-dynamics in V starting at time t = 0 from the configuration a, we get 
that, for configurations a with positive magnetization, [ e x p ( t L ~  (a) 
can bounded from below by 

[ e x p ( t L ~  (a) >1 P(Tr176  > t) - L2P(T I" <~191 <~ t) 

= ! - ( L 2 +  l )P(T<"<~ (4.4) 

since inf~:.,c~l~>om(a) = l in view of our condition that L 2 is odd. 
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A rather standard computation in the theory of Glauber dynamics 
that uses the invariance of the measure/~v~ and the fact that 

P(v, >1 2L2t) <~ exp(-KLZt)  

for a suitable constant K, where v, is the number of updatings within 
time t, shows that 

~l~~ ( .... ~ (4.5) 

If we insert (4.4) and (4.5) in (4.3), we get that 

(m; exp(tL ~  ) >/2/~v ~ (m(tT) ~> 0) - 4(L 2 + 1 ) 

x LZtl~~ 1) -2(L2  + l ) e x p ( - K L 2 t )  (4.6) 

By symmetry /~v~ 1/2, so that, for all L large enough and all 

l<~t<~[16(LZ+l) , o L-/~v (re(a)= 1)] - (4.7) 

the r.h.s, of (4.6) is greater than 1/4. 
If we combine this result with (4.1), we obtain 

�88 ~< L" exp(-gapv,  (HB, Q~)t) 

V1 ~<t~< [16(LZ + 1) L:l~v(m(a)= 1)] -l  (4.8) 

We use at this point a fundamental result due to Shiosman (see Theorem 3 
in ref. 26) in his study of the Wulff shape in a finite square with periodic 
or open boundary conditions: 

T h e o r e m  4.2 (Shlosman). There exists flo such that for any/Y>--flo 
and any sequence of integers p , ,  L ~ N, satisfying 

�9 PL L 2 = 2~m ~ = p ~ (-m*(/Y), m*(fl)), P L -  mod 2 

the limit 

~(p) = 2ira - ~ log[# v ~ (m(~) = Pc)] 

exists and is given by 

1 [ m * ( f l ) - I p l ' ~  '/2 
) , Ipl->p, ,  

\ 2m*(fl) J ' IPI~<P~ 
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where the constant w is the value of the Wulff functional W~ on the Wulff 
curve aW (see Theorem 1.1) and the singularity point p. satisfies the 
equation 

1 w ( m * ( / ~ ) -  IP~l'] '/-" 
k i- -qpS ; 

W a r n i n g .  Due to some misprints, the formula for ~(p) in ref. 26 
appears with 1/2 and [ (m*( f l ) - Ip l ) /2m*( f l ) ]  j/2 replaced by 1/4 and 
[m*(fl) - IPl ] 1/2, respectively. 

R e m a r k . .  Given e e(0,  1/4) and fl large enough, it is possible to 
show, using the methods of ref. 4, that the above limit is approached, as 
L - ,  oo, at least as fast as L -~/2+~ 

By plugging in (4.8) the result of Theorem 4.2 and its strengthening 
mentioned in the remark above, we immediately obtain the required upper 
bound on the gap. 

Remark. Actually the above reasoning leads to an upper bound on 
the gap which is a negative exponential of the surface in an), dimension 
d>~ 2 if we use the estimate of Schonmann (25) 

# ~  (re(a) = O) ~< e x p [ -  c(fl) L d-  '] 

for a suitable constant c. Moreover, it is possible to show t2~ that in two 
dimensions the above estimate is valid for an), fl larger than the critical 
value tic. Therefore, using Corollary 2.1 and the above observation, we get 
that in d =  2 for any fl > tic there exist two constants c~ and c2 such that 
for any L large enough 

exp( - cl L) ~< gap v~ (HB, ~ )  ~< e x p ( - c 2 L )  

It would be nice to show that at least one of the two constants is equal 
to fir B. 

We finally notice that it was possible to follow a slightly different 
proof by using in the variational characterization of the gap the trial 
function 

f ( r  = z(m(cr) > O) - z(m(,r) < O) 

7,(A) being the characteristic function of the event A, and then exploiting 
Shlosman's result. 
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Lower  Bound .  We start by replacing the open boundary conditions 
on 0V by very weak plus boundary conditions. More precisely, let 

6 = L - 1/2 

and let us consider a constant boundary coupling U~ y): 

UOV(x, y ) = 6  V(x ,y)eOV 

Then, in the notation established in Section 1.3 and at the beginning of the 
present section, we trivially have for any a e { - 1, + 1 } 

exp( - 8 f l  6L) t~ 6+. ~+,6+.6+ (a) <~ lZ~v (a) <~ exp(8fl 6L ) p~+,a +.,~+.,~ + (a) 

exp( - 8fl .~r ~ ,, u~,,to.6 + '~ " ~ '  ~" I-,} I(a)<-P~~ "'a'6+'(a) 

(4.9) 

where 0 t " ~  is the conditional probability of having the value a for a(x)  
given that outside V there are open boundary conditions and that the 
configuration in V \ { x }  is a. Similarly for p~.~i"~'6+~(a). 

It is immediate to check, using the variational characterization of the 
gap in terms of the Dirichlet form (1.17), that (4.9) implies the following 
bound on gapvL(HB, ~ )  in terms of gapvL(HB, +,  6): 

gapvL(HB, ~ ) / >  exp(-32f l  6L) gapvL(HB, +,  6) (4.10) 

It is therefore sufficient to establish the correct lower bound with " 6 + "  
boundary conditions. 

To this purpose we proceed exactly as in Section 3, namely we 
consider the {Qi}-dynamics with Q~ as in the proof of Theorem 3.1 and 
estimate gapvL(HB, +,  6) by 

1 e x p  ( - 4 f l )  
gapv, (HB, +,  6) 

>~iO,I- exp( -4 f l )  + exp(+4fl)  

x e x p [ - 4 f l ( l + l ) ] g a p v L ( { Q , } ,  + , 6 )  (4.11) 

where l = 2[L  1/2 + ~-]. 
The main difference now with the reasoning behind the proof of 

Theorem 3.1 is the following. When we start from the two extremal con- 
figurations ( + )  and ( - )  at the beginning of an ordered sequence SN and 
we update the first rectangle Q~, we replace (+)Q, and ( - ) o ,  with two 
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configurations ~/~, and r/~, distributed according to a~.o+.+.6+ and 
a6+.6..-.6+ respectively. Contrary to the "full" (i.e., ~ = 1 ) plus boundary 

. 6 + . 6 + . - . 6 +  is not conditions discussed in Theorem 3.1, the measure ~Q~ 
concentrated for fl large on configurations which resemble those of the plus 
phase, at least far from the top side, but insteadl due precisely to the "full" 
minus boundary condition on the top side, on configurations in which the 
spins are mostly minus one with little islands of plus spins. Therefore, with 
large probability, the first updating of the ordered sequences will not force 
( + ) and ( - )  to agree in a large portion (e.g., 3/4) of Qj. 

We notice, however, that with very small probability the two new con- 
figurations (+)'o~ and (-)"o~ will agree in, say, 3/4 of Q~ if, for example, 
the interface in the configuration r/~, separating the minus spins on the top 
side of Q~ from the plus spins in the rest of the boundary instead of being 
in its typical position, namely close to the bottom side of Q~, is very close 
to the top one. It turns out that the probability in question is at least of 
the order of e x p ( - f l ~ L ) .  Once this rare event has occurred, then, in the 

t/~l, 6 + ,  +.t~+ 
second updating, we will have to consider the Gibbs measures /~02 

t/~l,6 + .  - - , 6+  
and/~e2 , which, if we approximate, as we did in the introduction 
to the proof of Theorem 3.1, the boundary condition r/~ t with a "full" plus, 
become/~ i  ~+' +'~+ and/t~,  'n+'-'~+ 

Now the situation is very different from the first updating and much 
more similar to the case treated in the proof of Theorem 3.1. In fact, in the 
Gibbs measure /~"~§ the "full" plus boundary condition on the 
bottom side compensate, exactly the "full" minus boundary condition on 
the top one and therefore the "phase" (that is, the structure of the typical 
configurations) is decided by the lateral " 6 + "  boundary conditions. Since 
the typical fluctuations of the interface separating the minus spin of the 
top from the plus spins at the bottom are of order x//-L ,~ l, and since 
61= L'~> 1, one can conclude (see Proposition 4.1 below) that the above 
two Gibbs measures are very similar in, say, 3/4 of Q~. Thus the second 
updating will, with large probability, enlarge the region of agreement 
between the evolutes of ( + ) and ( - )  to 

{xe v, O<~x2<<.~l} 

Iterating this procedure, we see that an ordered sequence SN = { t~ ..... zN} 
will typically glue together ( + ) and ( - ) with the last updating at time tu, 
provided that in the first one, at time t~, a very rare event of probability 
of order exp(-[3zpL) has occurred. 

Clearly the above reasoning implies that the relaxation time to equi- 
librium for the {Qi}-dynamics should be at most of order exp(+[3zpL) and 
therefore, using (4.11), the required lower bound would follow. 



1214 Martinelli 

Let us implement the above program. We start by giving a generaliza- 
tion to the case of 6 + lateral boundary conditions of Proposition 3.1. As 
in Section 3, let R be a rectangle 

R =  {xE Z2; O<<.xl <<.L~, O<~x2 <~L~} 

with LI ~L2>~L~/2+L Then we have: 

P r o p o s i t i o n  4.1. Let m > 0  and e~(0 ,1 /2)  be given and let 
6=L? ~/2. Then there exists flo=flo(e, m) such that for all fl>~flo and all 
x=(xl,x2)aR with x2<~3L2 we have 

+ . 6 + ,  - , & +  p~ ' a+ '+ ' a+ (a (x )  = 1)--/a R (a(x) = 1) ~<exp(-rnL~) 

Moreover, if R and R' are two rectangles as above with the same basis L~ 
but different heights Lt>~L2~L'2>~L'In+% then for all x=(xl,x2)~R 

1 t with, for example, x2 ~< ~L2,  we have 

p~+'a+'+'a+(a(x) 1 ) -  a+a+ +,a+ = /.t R ' " (a(x)=l)<~exp(--mLll /2+~) 

For a proof see the appendix. 
There is an interesting corollary to the above proposition that can 

be viewed as a generalization of Theorem 3.1 to the case when we have 
open boundary conditions on three sides of the square VL and full plus 
boundary conditions on the remaining one. 

Corollary 4.1. Let ee(0 ,  1/2) be given. Then there exist flo< +oo 
and C < + oo such that for any fl > flo and any integer L 

gapvL(HB, ~ ,  ~ ,  + ,  ~)>~exp(-CflL ln+~) 

ProoL We use (4.10) to replace the open boundary conditions on the 
three sides by 6 + boundary conditions. Then we can repeat word for word 
the proof of Theorem 3.1, with Proposition 3.1 replaced by Proposition 4.1. 

The second new result that we need is as follows. 
For a given rectangle R as above and e ~ t 2  R, let F + ' + ' - ' + ( G )  be the 

family of contours of a with boundary condition z having the constant 
signs + ,  + ,  - ,  + on the external boundary of the four sides of R ordered 
in the usual way. As one can immediately check, under the above boundary 
conditions there exists only one open contour, which will be denoted by 

+ , + , - - . +  
FR. opt. (a). 

We then define the event ~r ~" §  as 

{ + , + , _ . ,  { 13L2]) 
, s ~ ' + ' - + =  cr;FR, op~. +(a)c x~R;x2>--~--;; (4.12) 
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P r o p o s i t i o n  4 .2 .  In the hypotheses of Proposit ion 4.1 there exists 
a positive constant C independent of fl and L~ such that 

p6+.6+.-.,~+ (~r ~. + . . +  )/> exp( - t i r o L ,  - CflL]) R 

For  a proof  see the appendix. 
We are now in a position to complete the proof  of the lower bound. 
As a first step and for reasons that will appear clear later in the proof, 

it is convenient to modify slightly the coupling for the Q:dynamics .  More 
precisely, we use the same algorithm described in (1.24), (1.25), but with a 
modified coupled measure iTol for the first rectangle Q~. The measure iTo,, 
which will be obtained from the old one re, via "surgery" (see, for instance, 
ref. 3) on a suitable subset of Q n, will, however, still enjoy the monotonici ty 
property described at the end of Section 1. 

Let /~  be the rectangle 

{ - t _  3tl, 
/~1= - v ~ Q l , x ' ~ <  16J 

r i l l . . .  ~-(NI 
and let vol be the measure on (Ool) N, N = 2  L, constructed in 
Section 1.4, with boundary  conditions 6 + on the bot tom and lateral sides 
of Q~ and r .11 ..... r ~NI on the top side of Q=. 

We then construct the new measure ~o, on O N al as follows. 
Given N configurations a I~ ..... a lu~ in s where 2# denotes the 

~o- I l l  . . , o- IN)  ; - t i l l  . r l N I  
external boundary  of the top side of /~ ,  let ~o,~u' be the 
measure constructed according to (1.20), (1.21) for the set Q j \ 5  ~ and 
boundary  conditions : 

�9 6 +  on the bot tom and lateral sides of Q-j. 

�9 0 . ( 1 ~ . . . ,  if(N) on L. a. 

�9 r ct~ ..... r *:v~ on the top side of Qj ,  where r It~ ..... r ~NI are a// possible 
configurations on the external boundary  of the top side of Qj.  

O - ( I ) , ,  , ~ ( /~ r ) *  r i l l . . ,  r ( N I  
I t  is very  i m p o r t a n t  to not ice tha t  ~ Q, \u  " is a p roduc t  o f  the 

measures 
a(l) a(v) and ~ a c t )  ' " " e r r ' v} ;  "c(t I " " " r l ' v }  

where, for notational convenience, we have omitted to indicate the fixed 
6 +  boundary  conditions on the bot tom and lateral sides of Qj. 

Finally, given N configurations 51~ . . . . .  r  in g2Q,, we set 

~Tr It' .... ( N ) ( ( ~ [ I ) ,  , I ~ [ N ) )  

Q I  " ' "  

r I l l ' ' "  0.1 N ) )  vQ l e.~',(alt~ ..... T(a,,~ ..... a*u~; 5 I l l  ..... 5 IN~) (4.13) 
O-I I I . . . ~1,%' I 
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where 

o ' ( i l  �9 �9 �9 a 4 N I ;  z ( I )  �9 �9 - " r ( N I / ( ~  ( 1 ) ( ~ ( N )  "1 T(r ~ Q , \ ~ ' , . . . ,  Q,\j~', 

if ff~' = cr~o' (4.14) 

T(cr(~) ..... or(u); ~tt) ..... fftN~) = 0  otherwise 

It is easy to see, using the DLR equations, that if the event A depends only 
on the k th  configuration #(k), then 

v Qt~tm "" tuV)( A ) = /I Qn6+'a +'rqkk /i + l A , ,  p (4.15) 

and, moreover,  that if the event A c (I2ot)u depends only on the values of 
the spins in Q t \Le, then 

�9 rill.., o+(II.., o-(NL t(l). 
ve, ~'~'(A)= Y" ve,(a(l) ..... ~r ~u~) ve , \~  . . . .  ~'(A) (4.16) 

tzr(l) . . .  GINI 

Finally, it is immediate to check, using the monotonici ty (1.23) of the 
V T ( I )  . . .  r ( N )  V t r ( l l . ,  . o ( N ) ;  r ( l )  , . .  T (N)  measures Q, and QL\~ , that (1.23) holds true also for 

~"~ .... ~u~ This fact implies, in particular, that if we use the coupling (1.24), QI  

(1.25) with the measures ~o,, re2 ..... re,, then, under this new coupling, any 
ordered set of initial configurations will stay ordered at any future time. 

Let now SN = {tl ..... tu} be a fixed ordered sequence with t l = 0 ,  let 
Ai(x), Ai, be the events defined in (3.4), and let q~=P(A~I~), where 

9 =  {((_~IQ, I,~+~,,,  ,e, : = d + ' + ' - ' +  o, } (4.17) 

As in Section 3, we have 

q,,+l <~q,+P(A,+l n A~,I ~') (4.18) 

Let us estimate the second term in the r.h.s, of (4.18). As in Section 3, we 
let 

I '[']t R,,= x ~ U  a j ; x 2 < ~ ( n + l ) ~ -  
j<~, 

and 

D = U  Qi 
j > ~ 2  

We observe that, since the sequence Su is ordered, if A~ has occurred for 
some n t> 1, then necessarily ( - ) I ,  ~ and ( + )~e,l.~+ are both equal on 
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the external boundary of the bottom side of Q2 to a common configuration 
that we call ~. Again because of the ordering of the sequence SN, the next 
updatings at time t~, i~> 2, will not modify ~ on the external boundary of 
the bottom side of Q2 and therefore they will be reversible with respect to 
the Gibbs measure/~a+,a+,a+ on f2o. 

Thus, following Section 3 [see (3.6)-(3.9)], we can bound 
P(A,,+ l ~ A C ] ~ )  by 

where 

F,(z)-- 

.,,, .,,,, ):,Q,).a+ ):?,)."+ +. +.-. +) Zvo, ( ( -  =(-l- = v l d o ,  F,(r) 
i" 

T 

U~+'~+'~+(a) 
X E R n + l ~ O n + l  

o~d'2 o 

r o ,6+ + 6 + t  ~X~ ct,6+. XL/~Q.+/ ' tqt ) = l ) - - / ~ Q . + , - ' a + ( q ( x ) = l ) ]  (4.19) 

As in (3.9)-(3.11), we get, by monotonicity and the DLR equations, that 
F~ (r) is bounded from above by 

F . ( z ) =  ~ ~ r.a+.+.a+ _ L~R.+,~O.+,\Q,(o)(rl(x)= 1) 
. r  ~ R n  + 1 t"~ Q n  + I 

�9 r a + , - - , d i +  IG ~ / ~ l X  ) --ta~.+,~,Q..,\o,~ Iv t t  = 1 ) ]  

In conclusion we have shown that 

(4.20) 

c 6 + , 6 + , - - . 6  P ( A . + , c ~ A . I ~ ) < ~ I ~ o ,  + (v I Jzr +' - '  + ) F2 (r) 
"r 

(4.21) 

In order to prove that (4.21) is very small, we need a last result on the 
Ising model which shows that, conditional to the event d ~ :  + ' - '+ ,  the 
projection (or relativization) of the measure /~,+.a+,-.a+ on the external 
boundary of the bottom side of Q2 is, in some sense, very close to the 

a+'a+'+'6+ and of the measure same projection both of the measure /aR.+,,.Q.+ , 
+,6+.-.a+ More precisely: I I R n + l V Q n + l  �9 

P r o p o s i t i o n  4.3. Let m > 0  and e e (0, 1/2) be given. Then there 
exists flo--- flo(e, rn) such that for all fl/> flo we have: (a) 

~ " a+'a+'- 'a+('r + '+ ' - '+  (r) F2('r) 
-r 

~ e x p ( - m L  1/2 +~) 



1218 Mar t ine l l i  

and (b) 

[Y. ~+.6+.-.,~+,~, ~r 
lao.~ ' '~ Q, ) F , ( z ) -  y. " + a+ - a + ,  - ~'g.'+, ~;o~+, t z )F ,  

I r  

~< exp( - mL':) 

For a proof see appendix. 
Using Proposition4.3 and the DLR equation for ~R.+,uo.§ and 

~6+.6+.+.a+ R.+,,~o.+, . we get that (4.21) is bounded from above by 

2 exp( -mL~)  + ~ I- 6+.,~+. +.a+ L/~R.+,,~~ (~(X)= 1) 
. t 'E R n +  I ~ Q n + l  

+ . 6 + ,  , 6 +  -/~R.+,uo,,+, (r/(x)= 1)] (4.22) 

In turn. using the fact that 

6 + . , ~  + .  + . 6 +  1/ + , 6 + .  + . 6 +  FtR,+,~,O.+, (q(x)=l )~< R,,+,,oe,+, ( q ( x ) = l )  

and applying Proposition 4.1 to the rectangle R,,+~w Q,,+~, we get that 
(4.22) can be bounded from above by 

3 e x p ( - m L  ~) (4.23) 

for any given m > 0  and e~(0, 1/2), provided that fl is large enough 
depending on m and e. 

In conclusion we have shown that 

P(A,, +, ~ A ~iI ~ ) ~< 3 exp( -- m U  ) (4.24) 

In order to conclude that q,v is small, we need to control the first term q~ 
since 

N - I  

qN<~q~+ ~ P ( A , + , n A ~ I ~ )  
n 

P r o p o s i t i o n  4.4. Let m > 0  and e e (0, 1/2) be given. Then there 
exists rio-- fl0(e, m) such that for all fl/> flo we have 

ql <~ e x p ( - m L  l/2 +~') 

ProoL Let v - ~ e ,  be the measure on s constructed in (4.13). By 
monotonicity in the initial configuration and by the definition of the event 
At, we can estimate q~ from above by 

q,~< ~ [ v ( a ' U ' ( x ) = l l { a " ' e ~ r  '+' .+}) 
.I'E R I 

--v(a~t~(x)= 1] {o'~t~ ar + '+ ' - '+  })] (4.25) 
Qt 
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where we used the convention that  (7 (j) and a (N) are the components  of a 
generic configuration 0 e l 2  ~" corresponding,  respectively, to the minimal 
( - ) and maximal  ( + ) boundry  conditions on the top side of Q~. 

Let us examine separately each one of the two terms appear ing in the 
sum in the r.h.s, of (4.25). 

Because of (4.15), the second term v(a(~)(x)= 11 {a( t )e  ~r is equal to 

v(a( ')(x)  = II { a ( ' ) e  ~ : + ' - ' +  }) 

= ~,~.+,~ + . - ,~+  ( < x ) =  l ) d ~ , ,  +, - ,  + )  (4.26) 

Since the event ~d~; +' -" + implies that the entire unique open contour  of  
the configuration a is outside R~, it is immediate  to check, using the 
monotonici ty  of the Gibbs  measure with respect to an increase of the 
boundary  conditions, that  

~6o+'6+'-'~+(a(x)=ll.~d+'+'-'+)>~'a+'a+'+'~+'a'x' 1) (4.27) 

Let us now consider the first term 

] : ( (~(N) (x )  = 11 { a ( ' )~  ~r +' + ' - '  + o ,  }) 

v(a(m(x)  = I n  { a ( ~ ) ~ ' ~  +'+'- '+o, }) 
-.+) (4.28) 

where we used, once more, (4.15). 
We observe that  the event { t r (x)=  1}, X S R l ,  and ~d + ' + ' - ' +  depend 

O i  

only on the spins in RI c / ~  and Q~ \{/~l w L#}, respectively, where RI and 
have been defined right after Proposi t ion 4.2. 

o ,111 . . ,  o-IN);  r (I  ) . . .  ,t-IN) Therefore, using (4.16) and the fact that  vQ,\~ is a product  
~0-11 ) , . . G{N)~ -~{I ) . . . I-(NI 

of the measures v~i ) .... (~) and Q , \ / ~ , , ~ )  , we get 

v(aIUl(x)= 1 n {cr(')e ~ '+'+'-'+_Q, }) 

= Z v~ , (o" )  ..... ~ 'N))v~i '  . . . .  ' ~ ' ( a ' N ) ( x ) = l )  
o 4 t | , . .  O-(N) 

• v ~'ll) ' ' ( ~ ) :  ~") .... (u)(t~(J) ~ ad +' +' - '  + ) QI \{Rt~}  Ol (4.29) 

~(11 ,.,~(N) 
We now observe that, because of (1.22) applied to ~, , 

VtY{I)'"IT{NI(~(NJIv~-- 1 )  ~ "1" " 6  "1" ' ~ N I' t~ -1- 
~, ~a ~ . , j -  =/a~, ( a ( x ) = l )  

< ~ , + ' ~ + ' + , ~ + ( ~ ( x )  = 1) (4.30) 

8 2 2 / 7 6 / 5 - 6 - 9  
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so that the r.h.s, of (4.29) becomes smaller than 

~/~1 ~ u[ . ,~  ) - -  ~ d ~ O l '  " ' ) 

=/a~,6+. 6+.+ ,6+1~o.,x 1/~ = 1) #Q,~ + '  6 +" --'iS-i- (0" ~ ~ ~)l' q-' -- ' + ) (4.31) 

where we used once more (4.15) to write 

In conclusion, from (4.28)-(4.31), we get that 

v(alUl(x)  = 11 { alll e.~r ~_, ' +'-" + })~<' ~+'~+' -.~ ~, ~, +'~+(a(x) = 1) (4.32) 

Combining finally (4.27) and (4.32), we bound from above the sum in 
(4.25) by 

~. ,- ~+.,~+.+.,5+,a,x,=l ) ,~+.a+.+.~+, , , 

~< exp( -- m L  1/2 + ~) (4.33) 

for any given m, provided that fl is large enough. In the derivation of 
the last inequality in (4.33) we use part (ii) of Proposition 4.1 and the 
definition o f / ~ .  

If we now use Proposition 4.4 together with (4.24), we get that 

P(A N I :~) ~< 3N e x p ( - m L  ~) (4.34) 

We are now in a position to conclude the proof of the theorem. Given a 
sequence S~v-= {t~ ..... by} of updatings, we say that Su is a good sequence 
iff SN is ordered and the event A~ occurred at the end of the sequence. 
Using (4.34) together with Proposition 4.2, we conclude that the proba- 
bility that an ordered sequence is also a good sequence is larger than 

[1 - Nexp( - m L ~ )  ] P ( ~ )  >1 �89 exp[ - f i L t ~  - CflL l/2 +~) ] 

for L large enough and some constant C. 
Thus, using Lemma 3.1, we get that, if T =  exp[ +f lL tp  + 2CflL~/Z+')] 

and L is large enough 

P(there exists a good sequence in [0, T])/> ] (4.35) 

As in Section 3, (4.35) immediately implies that 

gapvL({Q;}, f Z J ) > ~ e x p [ - f l L t ~ - 3 C f l L ~ / 2 + ~ ) ]  (4.36) 
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Clearly (4.36) together with (4.10) and (4.11) proves the correct lower 
bound. 

The proof of the theorem is completed. 

5. RARE E X C U R S I O N S  OF THE M A G N E T I Z A T I O N  

In this section we apply the results obtained in the previous sections 
to study in detail the time evolution of the magnetization m(a,) of the pro- 
cess. In particular we will analyze the large fluctuations of the observable 
m(tr,) and prove some asymptotic results close in spirit to the results 
obtained by Shlosman for the static problem (see Theorem 4.2). 

The setting will be that of Section 4, namely the HB-dynamics in a 
square V= VL of side L with open boundary conditions. Although the case 
with plus boundary conditions could be treated as well without any signifi- 
cant modification, we decided to omit it in order not to burden too much 
the reader. 

Let PL, L~ A/', be a sequence of integers such that 

PL lim -~=p~(--m*(fl),m*(fl)), p L - - L 2 = 0  mod2  
L ~ o o  

where, as usual, m*(fl) denotes the spontaneous magnetization, and let rpL 
be the stopping time: 

rpL = inf{t ~> 0; m(a,) <~ PL } (5.1) 

Then our two main results can be stated as follows: 

T h e o r e m  5.1. There exists fie such that for any fl >I fie and any Pt  
as above 

lim fl-~log[ ~ /a~(tr)E~(ro,)]=lp(pvO) 
L ~ o o  o" 

m ( a  ) > 0 

where the symbol E~ denotes the expectation over the HB-dynamics 
starting from the configuration a and the function ~(p) is given in 
Theorem 4.2. 

The same asymptotics holds if instead of starting from equilibrium 
with positive magnetization we start from the configuration identically 
equal to all pluses. 

T h e o r e m  5.2. There exists fie such that for any fl >t fie and any PL 
as above, there exist numbers {aL}LEN such that for any t > 0 :  (a) 

lim 1 t ~ ~ fl-L log(at) = r v O) 
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and (b) 

lim 
Cr 

m(a)> 0 

pv  ~ (a) P,,(TaL > tat) = exp(- - t )  

An analogous result holds if instead of starting from equilibrium we start 
from the configuration identically equal to all pluses. 

R e m a r k .  Theorem 5.2 says that, under a suitable rescaling deter- 
mined by the numbers aL'~ exp[flL~(p)], the stopping time ~pL started at 
equilibrium with positive magnetization becomes essentially unpredictable, 
i.e., it can be thought of as the (random) number of independent attempts, 
each of which has a probability of success of the order of exp [ - ilL(~)(p) ], 
that one has to make before seeing a success. 

For results with the magnetization density p outside the region 
( -m*(f l ) ,  +m*(fl)) we refer the reader to the paper by Lebowitz and 
Schonmann. (151 

Proof of Theorem 5.1. We start by proving a lower bound of the 
right order when we start from the measure p ~  restricted to the configura- 
tions of positive magnetization. 

Clearly for such class of configurations 

TpL ~ TpL v 0 

so that it is enough to prove a correct lower bound only for p ~ [0, m*(fl)). 
For any positive T we can write 

P~v(a) E~,('r:L)>-T ~, Pv~ 
a a 

re(a)>0 m{a)>O 

T >:~-- T Y. ~,~(,~) ?~(~:L~ T) (5.2) 
o" 

m(a)>O 

where we used the symmetry of the Gibbs measure under global spin flip. 
As in Section 4 [see (4.4) and (4.5)] the sum in the r.h.s, of (5.2) can 

be estimated from above by 

O 2L'T#v (rn(a) = PL) q- e x p ( - K L 2 T )  (5.3) 

for a suitable constant K. 
We now take the time T of the form 

T= exp[flL(~b(p ) - 6)] (5.4) 
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where ,5 is any fixed small number independent of L. If we recall 
Theorem 4.2, we get that, with this choice of T, (5.3) goes to zero as L gets 
large. This fact together with (5.2) implies that 

' '  [ 1 
jim ~-~ og ~ I.t~(a) E,,(rpL) ~0(p)--r Vpel-O,m~) (5.5) 

c r 
m (  cr ) > 0 

Since 6 can be taken arbitrarily small (after the limit L ~ oo), the required 
lower bound follows. It is also clear that the same lower bound applies also 
to E+ (zpL), that is, when the starting configuration is identically equal to 
plus one, since, because of monotonicity in the initial configuration, 

G 
r e ( o )  > 0 

In order to prove an upper bound, we have to distinguish between two 
cases : 

Case 1 p e ( - m * ( f l ) , p , ]  

Case2 pe(p , ,m*( f l ) )  

where p, is the singularity point of the function if(p) defined in 
Theorem 4.2. 

Let us begin with the first one. 
Clearly 

a (7 n 

r e ( a ) > 0  r e ( a ) > 0  

~< ~ P+ (%L/> n) (5.6) 
n 

since, by monotonicity in the initial configuration, 

P~(rp,>~n)<~P+(rL>~n ) Vn Va (5.7) 

In turn, for any integer N, it follows from the Markov property and (5.7) 
that 

P+ (rpL >1 n) <<. P+ (~pL >1 N) t'/N2 (5.8) 

Let us therefore estimate P+ (%L ~> N). We write 

P+( 'zoL>/N)=P+(;:d tx(m(a, )>~pL)=N) 

<~ S N dt P + (m(a,) >>- Pc) (5.9) 
N 
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where x(A) denotes the characteristic function of the event A and we used 
the generalized Chebyshev inequality in order to get the last inequality. 

Let us now choose the integers N, N O equal to 

N = exp [flL(~b(0) + 26)] 

No = exp[flL(~k(0) + 6)], 6 ,~ 1 

Then we can estimate the integral in the r.h.s, of (5.9) by 

~ dt P+ (m(a,) >1 PL) 
N 

No 

I ~9 dt[ P + (m(a,) >1 PL) - P~ (m(a) >~ P L) ] + 
N 

(5.1o) 

Let us examine separately each one of the three terms in the r.h.s, of (5.10) 
in the limit as L ~ or. The first term goes to zero by construction. The 
second term converges to 1/2 because of Theorem 4.2. The third term also 
goes to zero for fl large enough, if we use Theorem 4.1, the basic estimate 
(1.19), the fact that ~ , ( 0 ) = ~ ,  and our choice of the integer No. 

In conclusion we have shown that, for all fl large enough and all large 
enough L, 

p+ (~,,L>~ N)~< ] (5.11) 

Clearly (5.11) together with (5.6), (5.8) proves that 

~r 

m ( a ) > O  

# ~  (cr) E,,(zpL ) ~< E+ (%L) ~< 3N 

= 3 exp[flL(~k(0) + 26)] (5.12) 

which establishes the correct upper bound in the limit L--* ~ due to 
the arbitrariness of 6 also for the case when the starting configuration is 
identically equal to plus one. 

Let us now treat the (more difficult) second case p ~ [p~, m*(fl)). 
First of all we bound 

mot) > 0 
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by the same quantity but computed for the HB-dynamics in V with extra 
plus boundary conditions on the top horizontal side and starting from all 
pluses: 

U v~ (a) E.  (r0L) ~< E~176 + '~ (5.13) 
o" 

re(a) > o 

with self-explanatory notation. The reason for introducing on only one 
side of V extra plus boundary conditions is the following. For large L, 
the relaxation time to equilibrium [ =gap(HB, O, O, +,  0 ) - ' ]  with the 
indicated boundary conditions is of the order of exp(CflL '/2§ (see 
Corollary 4.1); therefore the relaxation time is much smaller than the 
inverse of the equilibrium measure of the hitting set {a; m(a)<~Pz.}, 

1~'~176 -1 >~exp[flc(p)L]; c(p) > 0  

It thus follows from a standard argument (see, e.g., ref. 1) that 

. (  - 1  E~+'~'+'~(ZpL)<.I.t~'~'+'~(m(cr)~.pL ) exp(flrL), 6,~ 1 (5.14) 

Thus one needs, in strict analogy with Theorem 4.2, to estimate from below 

i~ '~ .  +'~(m(a) <~ p L) 

as L ~ ~ .  This is the content of the next proposition : 

P r o p o s i t i o n  5.1. Let PL be as above. Then there exists flo such 
that for any fl >t flo and any given positive 6 

lt~ "~" +'~ <- Pc) >/exp[-/~(@(p) + 6)L ] 

for all L large enough, where qJ(p) is as in Theorem 4.2. 

The proposition can be proved by exactly the same methods as 
developed in ref. 4 (see also ref. 22) and employed by Shlosman (261 in his 
proof of Theorem 4.2; the proof is, however, lengthy and therefore it is not 
included in this work. 

It is possible to give a convincing explanation why the extra plus 
boundary conditions on the top side of V do not affect the asymptotics (or 
at least a lower bound) of 

/~ v~176 + '~ ~< pc) 

In ref. 26 (see ref. 4 for full details in the case of periodic boundary condi- 
tions and ref. 22 in the case of plus boundary conditions) the asymptotics 
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of p~'~176176 PL) is derived by proving that the typical structure of 
the set of configurations under the event {m(a)=  PL} is as follows: 

1. In case p>p~  there is a bubble W ~ of the minus phase close to 
one of the four corners of V, while in V \ W  ~ one has the plus phase. 
The shape of W ~ is that of the intersection with V of the rescaled Wulff 
shape 2 [ (m~ ' -p ) /2m~]  l/z W of total volume 4(m~' -  p)/2m~ and centered 
at one of the corners of V. It is clear from the results in ref. 4 (see Chapter 5) 
that the probability (with open boundary conditions) for the above situa- 
tion to occur is of the order 

I ( m ~ - p ' ~  w] = expl - - f l f f (p)L]  e x p [ - f l L ~ \  2m~ J 

where w is the Wulff functional computed on the Wulff curve OW. 

2. In case p~<p~, where p~ is as in Theorem 4.2, it is more con- 
venient to divide the volume V into roughly two rectangles, with the 
correct volumes determined by p, by means of a (roughly) straight horizon- 
tal line. It is clear that in this other case the probability is of the order of 

exp( - flrt~L) 
for any p ~< p 1. 

In the first case, we can impose on our configuration that it has a 
unique "large" contour exactly like the one described above, at distance 
greater than cL from the top side of V, where c > 1/2 is a suitable constant 
depending on p. Since the coefficients ~ ~ 1 7 6 1 7 6  of the cluster expan- 
sion of the partition function decay exponentially fast in the "size" of the 
set A, it is not difficult to see that in this way one obtains a lower bound 
on ~v'~176 which, apart from minor corrections that are 
adsorbed in the 6 appearing in the proposition, is like the one obtained 
without the extra plus boundary condition on the top side. 

It is clear that if we plug the statement of the proposition into (5.14) 
we get the required upper bound. The proof of the theorem is complete. 

Proof of Theorem 5.2. Let us define the numbers aL by the condition 

~, la~(tr)Po(%,>~aL)=e -l (5.15) 
tr 

ml~r)  > 0 

and let fL(t  ) be given by 

fLU) = Z kt~(a)P.(T~L>aLt) (5.16) 

m(a)>O 
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In order to prove the theorem it is enough, using the normalization (5.15), 
to show that 

lim [fL(t+s)-- fc( t ) fL(S)[=O (5.17) 
L ~  

and that the asymptotics of the number a , ,  as L ~ oo, is the right one. 
Because of (5.2) applied to T =  aL, we immediately get that 

aL <~e ~ /~v~((r)E~(TpL) (5.18) 
o" 

,n(a) > 0 

In order to obtain a lower bound on aL we observe that, using the argument 
employed in Section 4 [see, e.g., (4.4), (4.5)] 

1 - e  - j =  ~ l~~ P~(rpL<at`) 
a 

m(~r)> 0 

<~2L2(acv 1 ) / ~ v ~  1)] (5.19) 

for a suitable constant K. Thus 

1 - e  - 1  
a L >~4LZ/~v~(m(~ = (PL V 0)) 

(5.20) 

for large L. Clearly (5.18) and (5.20) together with Theorems 5.1 and 4.2 
prove the first part of the theorem. 

Let us turn to the proof of (5.17). We observe that, because of the 
definition of the stopping time zpL, it trivially follows that 

fc( t)  = ~ IJ~v (O ") P,(rpL > act) 
ct 

- ~, la~(tr)P~(%L>act)=fL(t)--ec 

pL ~n~cr)~O 

Clearly, using Theorem 4.2, ec goes to zero exponentially fast in L. 
Using the reversibility of the dynamics with respect to the Gibbs 

measure pv ~  we can write fL(t  + s )  as 

f ,  (t + s) = ~ pv ~ (tr) P~ (ZpL > at. t) Po (rpL > at.s) 
tr 

= ~ la~v(tr) P~(TpL>aLt)P~(ro,>aLs)+ez 
~r 

, n ( o )  > 0 
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so that the difference I fL  (t + s ) - f L ( t ) f L ( s ) l  can be estimated from above 
by 

I,t~ (tr) P~ (rl) P,~(zpL > aL t) 

re (a )  > O, m(r l  ) > 0 

x [P,(rpL > aLS) -- P,  (zpL > aL,)] + 2eL (5.21) 

If we now couple the HB-dynamics starting from ~r and ~/ together in the 
way described in Section 1, we can estimate the first term in (5.21) by 

/~ ~ ( a ) / ~  (t/) P(TpL (G) ~ rpL (t/)) (5.22) 

m ( t r )  > O, re ( r / )  > 0 

where, with an abuse of notation, P denotes the probability measure of the 
coupled process, and zpL(tr) and zp~(r/) the stopping times starting from a 
and r/, respectively. 

The idea behind the estimate of P(zpL(tr)#rp,(r/)) (see below) is at 
this point very natural: when the two starting configurations tr and ~/ are 
both chosen at random with respect to the Gibbs measure #v ~ restricted to 
the "phase" {m > 0}, then in a time scale T o, which is much shorter than 
the typical time scale of zpL(a) and zp,(~/), the two configurations become 
identical with very large probability. The reason for this quick loss of 
memory inside the "phase" {m > 0}, in contrast to the smallness of the gap 
(see Theorem 4.1), has to be found in the fact (see the proof of Proposi- 
tion 5.2 below) that, starting in equilibrium with positive magnetization, 
with large probability the HB-dynamics in V with open boundary condi- 
tions cannot be distinguished, at a given site x e V, from the HB-dynamics 
in V with an extra plus boundary condition on one of the sides of 1/". This 
latter loses memory of the initial condition much faster than the dynamics 
with open boundary conditions (see Corollary 4.1) and the result follows. 

Let us start with the technicalities. Let ee (0 ,  1/2) be given and let 
To=exp(flL~/2+~). Then we estimate (5.22) by 

2 ~ /a~(a) P,,(Tp,<To)+2 ~ /~(a) P(~ro~(+)ro) (5.23) 
o" cr 

m(o ' )  > 0 m ( a ) > O  

where ( + ) 7-0 is the evolute at time T o of the configuration identically equal 
to +1. 

We know already [see (5.19)] that the first term in (5.23) goes to zero 
as L ~ oo provided that fl is large enough. The second term is controled by 
the following new result: 
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P r o p o s i t i o n  5.2. Let ee(0,  I/2) and m > 0  be given. Then there 
exist flo < + oo and C < + oo such that for any fl/> flo, any integer L, and 
any time t >i exp(CflL 1/2 + ~) 

IJ~ (a) P(( + ), #o,)<~ exp( -mL)  
(r 

re(o) > 0 

It is clear that the above proposition concludes the proof of 
Theorem 5.2 in the case the starting configuration is distributed according 
to the restriction of the Gibbs measure to the set {0; m(a)>  0}. A similar 
argument can be repeated if the starting configuration is identically equal 
to +1. 

Proof of Proposition 5.2. Since 

p((+),+s#o,+s)<..P((+),#a,)  Vs~>O 

it is sufficient to prove the result for the fixed time to=exp(C~Lm+~). We 
first estimate P(( + ),o # ~ by 

P(( + ),0 #- O,o) "-- < ~ P((+),o(X)#a,o(X)) 
x E V  

Given now x~ V, let us uppose, without loss of generality, that the top 
horizontal side of V is such that its distance from x is greater than or equal 
to L/2. Let also ( + ),~176 +.0 be the evoluted at time to of the configuration 
( + ) under the HB-dynamics in V with (~ ,  ~5, +,  ~5) boundary conditions 
on 0,~t V. Then, by monotonicity, we have 

P(( + )t0(x) # 0,0 (x)) 
~<p((+ o , o ,  + , ~  ),o (x) ~ O,o(X)) 
=P((+)~ '~176  + 1)--P(a,0(x) = +1) (5.24) 

Thus 

E 
m ( o ) > O  

/av~(a) P(( + )t0 # a,o) 

U~v(a) [p ( (+)~ '~176  + 1 ) -P (a t0 (x )=  +1) ]}  

(5.25) 

x E V  g 

m(e)>O 

~ z 
x E V  

- y '  pv~ P ( o , 0 ( x ) = + l ) ]  
a 

m ( o ) > O  
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Let us first treat the term P ( ( + ) ~ ' ~ 1 7 6  Using (1.19), 
Corollary 4.1, and our choice of the time to, we get that 

0~< P ( ( + ) ~ ' z ' + ' z ( x ' ) =  + 1 ) - / a  v~176 = +1)  
0 

<~exp[C 'L2- toexp ( -C~U'+~vz ) ]<~  ~ e x p ( - r n L )  (5.26) 

for any given m > 0 and any L r N, provided that/~ is large enough. 
As far as the second term in the square brackets in the r.h.s.'of (5.25) 

is concerned, we write 

m ( a )  > 0 

>~ ~, la~ = + l c ~ m ( a , o ) > 0 )  
t7 

re (a )  > 0 

= ~ ~ (a) P(a,o(X ) = + 1 n m(a,o ) > O) 
o- 

- ~ ~v~(a) P(o',o(x) = +1 n m(a,o) > 0 ) 
o-; m(r't ) ~< 0 

= II~  ( ~ ( x )  = 1 n m(o-) I> O) 

- ~. 1~~ +1 n m(a,o) >~0 ) (5.27) 
a ; m ( a  ) < 0 

where we used the invariance of the measure/~v ~. 
The last term in the r.h.s, of (5.27) can be bounded from above by 

/l~ (a) e(there exists s ~< to; m((rs) = 0) 
a 

<~ 2L-tola v (m(a) = 0) + exp(-KL2to)  (5.28) 

for a suitable constant K and large enough fl, by the argument illustrated 
in Section 4 [see (4.5)]. 

Clearly, because of our choice of to and of Theorem 4.2, the r.h.s, of 
(5.28) is smaller than � 89  for any given m, provided fl is large 
enough. 

In conclusion we have shown that 

' (  ) 5 p  (+  o .o ,+ ,~  t,0 (x) -  }-" . e (~ /P(~ ,0(x / - -+ l )  
m(a)>  0 

~< �89 I/2v ~ 1 7 6  = -I- 1 ) - - / . t v  ~ (o ' (x )  = 1 Ira(a) >10)1 

+ ] e x p ( - m L )  (5.29) 

for any L, provided t h a t / / i s  large enough. 
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In order to complete the proof, we need a last, rather obvious result 
on the Ising model, whose proof is an exercise in the cluster expansion and 
it is therefore omitted. 

L e m m a  5.1. Given m > 0, there exists flo such that for all fl > flo 
and all L 

I/~~176 + 1)-/~v~ -- 11m(~)>~0)l ~< ~ e x p ( - m L )  

If we apply the lemma to (5.29), we obtain 

~ la~ 
A'e V 

n l ( o )  > 0 

for any given m > 0 and any L ~ N, provided that fl is large enough. The 
proposition is proved. 

6. M A R K O V  C H A I N  D E S C R I P T I O N  OF THE 
T I M E - R E S C A L E D  M A G N E T I Z A T I O N  

In this final section we work in the same setting and notation of the 
previous two sections and we consider the normalized magnetization 

1 
p(o,)--ivLi ~ ~,(x) 

A" E I /L  

of the process started at equilibrium [or from one of the two extreme 
configurations ( + ) or ( - )). 

We show that it is possible to rescale the time t by a multiplicative 
factor t, depending on the side L of the square V,, in such a way that, as 
L --* ~ ,  the finite-dimensional distributions of the rescaled process 

p(f,)=p(atL,) (6.1) 

converge to those of a continuous-time Markov chain on the set 
{-m*(fl), m*(fl)} with unitary jump rate for both states. 

From what we just said, it is clear that the speeding factor tL must be 
determined essentially by the condition that 

where 

I,,(~, > 0 d/~ v~ (a) P(P(a') "~ -m*(fl)) .~P 2 

p = � 8 9  e x p ( - 2 ) ]  (6.2) 
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is the probability that a continuous-time Markov chain with unitary jump 
rate on { - 1 , 1 }  starting at time t - - 0  in +1 is, at time t = l ,  in the 
state - 1. 

It is also clear from the results of Sections 4 and 5 that 

t/_ ~ exp(flro L) 

for large L. 
Let us state our result more precisely. We denote by M the two-state 

space { - m * ( f l ) ,  m*(fl)} and by Y, a continuous-time Markov chain on M 
with unitary jump rate for both states. Clearly the invariant measure v of 
the chain Y, is uniform over M. Let also, for any given e e (0, m*(f l ) /2) ,  
tL = tL(e) be the such that 

P~'(P(ao) >1 m * ( f l ) -  e; p(Ot) <~ - r n * ( f l ) +  e ) = P  
2 

(6.3) 

where p is given by (6.2) and P~ denotes the probability over the HB- 
dynamics started from the equilibrium distribution/~L" Then we have' 

T h e o r e m  6.1. For any fl large enough, any e as above, and for any 
choice of times t, < t_,< .-. < tk and numbers m i ~ M ,  i =  1,..., k, 

lim P ~ ( I p ( O , , ) - m , I  <e, ..., Ip(ti,~)-mkl <e )  
L ~ o ~  

= pv( y, ,  = rn I ..... Y( tk)  = rnk) (6.4) 

where P" denotes the probability of the chain Y, with initial distribution 
the invariant measure v. Moreover, 

/ i m  ~L log(tL) = za 

Proof .  The second part follows immediately from the results of 
Sections 4 and 5. 

As far as the first part is concerned, it is well known that 

lim # ~ , ( I p ( a ) - m * ( f l ) l ~ < 6 ) = � 8 9  V6>0 (6.5) 
L ~ o o  

and similarly, by the symmetry under global spin flip, for m*( f l )  replaced 
by - m ,  (fl). Hence, if the limit in the 1.h.s. of (6.4) exists for fixed 
ti < t: < -.. < t ,  and arbitrary choice of rnie M, i = 1, ..., k, it must be a 
probability measure o n  M k. 
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We wm prove (6.4) by showing that the limit along any convergent 
subsequence is equal to the r.h.s, of (6.4). The key step in our argument is 
to prove that, asymptotically as L ~ ~ ,  the variables p(f , , )  ..... P(~,k) enjoy 
the Markov property. This is the content of the following proposition. For 
notational convenience we denote by A,,(mi) the event Jp(c?,,)-m;I < e. 

L e m m a  6.1. Under the same hypotheses as Theorem 6.1, the 
difference 

P"(A , , (m l )  ..... A,k(mk)) 

-- PU(A ,~ (m, ) ..... A ,k-, )) 2P~( A,4-, (m~ _ ~ ), A ,4 (mk) ) 

tends to zero as L ~ ~ .  

Before giving the proof of the above key result, we complete the proof 
of Theorem 6.1. 

Using the lemma and (6.5), it is clearly enough to prove that 

lim PU(]pffo)+m*(t~) [ ~<~; [p(ff,)-m*(/~)l ~<E) 
L ~ o o  

= P"(Yo = -m*(/~) ;  Y, =m*(]~))=  ( 1 - ( 1 -  2p)') (6.6) 

Let us first consider times t of the form t = I/m, m e N, and let us define by 
a(1/m) any limit of the 1.h.s. of (6.6) computed for such t. From the lemma 
applied to times t~ = i/m, i=  1 ..... m, and the fact that, by construction 

one immediately gets 

a ( 1 ) =  p - 
2 

a ( 1 ) = ( 1 - ( 1 - 2 p )  1/') (6.7) 

Once we know the value of a(1/m) we can repeat the same argument to 
show that (6.6) holds also for rational times of the form t =  n/m. In order 
to extend (6.6) to all times t, it is sufficient to prove, for example, that, if 
~i(t) and _a(t) denote the lim sup and lim inf of the 1.h.s. of (6.6), then both 
of them are nondecreasing fuction of t. 

For this purpose and denoting by aL(t) the l.h.s of (6.6), we 
immediately obtain from the lemma and (6.5) that a L ( t + s )  satisfies the 
equation 

aL(t + s) = aL(t) + aL(t) [1 - 4aL(t)]  + r/_ (6.8) 

where lim L . ~ rL = 0. 
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We now observe that  
aL(t) <~ i , 3 + r L  (6.9) 

where, as before, l imL_ ~ r)_ = 0. 
In fact, again because of (6.5), 

PJ'(lp(O,)--m*(~)[ ~<~; ]p(ffo)+m*(/~)[ ~<~) 

= �89 P~'(p(f,)  > 0; p ( fo )  > 0) + r)_ 

and, by the F K G  proper ty  of the measure P~' (see, e.g., ref. 13), 

P"(p(~,) > 0; P(ao) > 0)/> P'(p(6, )  > O) P"(p(Oo) > O) = �88 

If we insert (6.9), we obtain 

aL (t + s) >~ aL (t) + rL -- 4r~ (6.10) 

Clearly (6.10) shows that af t)  and aft) are nondecreasing functions of t and 
thus (6.6) holds for all t. 

Proof of  l_emma 6.1. Using the reversibility, we can write 

PU(A,~ (m, ) ..... A ,k (mk ) ) 

f Ao~,,,_~) dl't~ (a) Po(A I,~- ,k-,l (mk)) 

x P~(A i,k_ , ,,i (ml)  ..... A i,~_2_,k_,l (ink_ 2) ) (6.11) 

where P~ denotes the probabil i ty measure on the HB-dynamics  start ing 
from ~r. 

We now compare  the r.h.s, of (6.11) with the quanti ty 

A k - I  (# v~ ,)) - '  P"(A, , (m, )  ..... ,k-,~,,, )) 

x PU(A,k_, (mk _ 1 ), A,~ (m~)) (6.12) 

Using the stat ionari ty of the measure P"  and reversibility, we can write 
their difference as 

[p~ I~uo~,,,k_, d#~176 (6.13) 

�9 ~ , , ' o ( m k  - I )  

where 

G(q. <x) = [ P , ( A  I,k-,k-~l ( m r , ) ) -  P.. (A i,,_,k_.l (mk))]  

xP~,(Al,~_._,.(rnl) ..... A i,k_,_,~_ LI (rnk_ 2)) (6.14) 
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Using the coupling described in Section 1 and the symmetry under global 
spin flip, the absolute value of (6.14) can be estimated from above by 

2 JJ~',l,;} >o > o dlt~176163 (6.15) 

which tends to zero as L --* on because of Proposition 5.2. We have in fact 
that 

tL [-tk -- tk- 1] >> exp(CflL 'n+') 

because of the second part of Theorem 6.1. 
The statement of the lemma now follows from (6.5) since, in (6.12), 

we can safely replace the factor [ /~L(Ao(m,_~)]  -1 with 2. The proof is 
complete. 

A P P E N D I X  

in this appendix we prove Propositions4.1-4.3. Since the proof of 
Proposition3.1 is very similar, although much simpler, than that of 
Proposition 4.1, we decided for brevity to omit it. 

Proof of Proposition 4.1. Let us fix e ~ (0, 1/2) and a rectangle R, 

R =  {x~ Z2; 0~<xj ~<LI; 0~<x2~<L2} 

with L l/> L2/> L 11/2 + ~. 
If J ~ ' + ' - ' +  is the event described in (4.12) 

d ~ + - + =  o ; r o . 0 . ( ~ ) ~  x~R;x,,..-W~ J 

we can write 

~'~+'-'~+ (a(x)= 1) 

-- ~ Z.~+.-, '~+ ( a ( x )  -- 1 Is CZ" +' - ' +  ) ~tZ "~+" - '~+ (dR) 

+ / t ~  '~+' - ' a+  (o '(x) = 1 n (~r +' - '  + )") 

where (z~'~' + ' - '  + )c is just  the comp lemen t  event. 
Since 

/a~'~+'-~+ (o(x) = 11dR) ~> ~ '~+ '+ '~+( t r (x)  = 1) (A.I) 

822/76/5-6-10 
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[see (4.27)], we obtain that the difference 

~ . ~ + ,  +.~+(c~(x) = 1 ) -  ~ ' ~ + ' - " ~ + ( ~ r ( x )  = 1) 

can be bounded from above by 

~ ~ ~  + ' - ' ~ +  ((~r ~'  + ' - '  + )'3 (A.2)  

In order to estimate the above probability, we first observe that the event 
(~ar ' + ' - ' + ) '  is a decreasing event (in the sense that its characteristic 
function is a nonincreasing function of the configuration). Therefore, if/~ 
is the new rectangle 

/ ~ = { x e Z 2 ;  

r is the configuration 

and 

O<.x I <~L I, - 16.. , .x2~ L2 

r ( x ) = + l  VxeOr fi with x,_<~L,_ L2 
16 

r(x) = - 1 otherwise 

then 

U~ y ) = 6  V(x, y)~c]l~ with x~ = 0  or Lt 

and O~x2<~L2-L ,_ /16  

uOR(x, y ) =  1 otherwise 

/a R+'~+'- '~+' '~ +" + ' - '  + )") ~ < t t J z r  R /I~U"R" ~ ((~r (A.3) 

If we denote by F~.o~o(cr) the (unique) open contour of o~12~ under the 
r boundary conditions described above, it is immediate to check that 

+ + -  + {,r r ~ . o p o , ( ~ r ) c ~ { x ~ h ; x , _ < r ~ L 2 } ~ f g }  ( s e R ' ' ' ) ' = ( d ~ ) ' =  . ~ 13 

so that 
veR.rtt,..i+.+.-.+)c ) uOR.~ r ,- /~a , , ~ R  ~<#~ ((sr (A.4) 

U ?R r For simplicity in the sequel we will denote the measure/a R ' by P. 
Let us now order the bonds in F~.opcn(a) from left to right and let us 

denote by ek,, eke+,,, the smallest, respectively the largest, bond in 
F~.or, e,,(a) such that no site in the portion of the exterior boundary of the 
left, respectively right, lateral side of/~ where the boundary coupling is 6 
is separated by one of the bonds eeF~.open(a ) with e>~ek,, respectively 
e<-Nek,+n. 
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We will denote by y = e k , . - - e k , + , ,  the port ion of the open contour  
F].op,,(a), a~f2i~, between e,, and e,,+,, and by ~ the set of them. 

Notice that, by construction, y is itself an open polygonal  line and that  
the first, respectively the last, bond in ~, separates at least one site in the 
internal boundary  of the left, respectively right, vertical side of R. More-  
over, if we denote by h;, the horizontal  line in R 2 containing the middle 
point of the first bond el of y, then h~. is at distance at least L2/16 - 1 from 
the horizontal  port ion of the boundary  of R. Let also 

d(v) = dist(v, h~.) 

We now define the event ~ as 

= a ;  d(';,)..~ 32J (A.5) 

Then we estimate (A.2) by 

P ( ( ~  ~)~) ~< P(~gc) + P ( ( d  ,~' + ' - '  + )c n oK) (A.6) 

L e m m a  A.1 .  Given m > 0 ,  there exists fl(e, m) such that  for all 

p (~c )  ~< exp( -mL~ ~) 

ProoL Given y, the set R can be written as the disjoint union of three 
sets: 

where A), has been defined in Section 1 and R~. + , R;7 lie, in a natural  way, 
below and above y, respectively. 

Associated to the set R~  we consider the parti t ion function 
Z(R~-, U a~, r)  with z boundary  condition and boundary  coupling U ~'~ on 
~cxtR~- n acxtR and plus boundary  condition on a~x,R~. + c~ A~,; similarly for 
Z(R~7 , U~'~, z). 

We can now write 

Z(/~, U ~ ,  + )  
e(c4c) = ~ exp(-2f l lYl )  

Z(l{, U~ y;d(7}>~L2/32 

Z(R~, U~,r)Z(R~-, U'~,z) 
x (A.7) 

Z(/~, U ~'~, +) 
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Unfortunately, we cannot yet use the cluster expansion described in 
Section 1 to simplify the above ratio of partition functions, since, although 
in Z(R;+., U'~a,r) the boundary condition is constantly equal to +1 
because of (a) in the definition of ?, so that 

Z(R~+, , U ~, 3) = Z(R~ + , U '~, + ) 

in Z(R.7, U ~, T) the lateral boundary condition may change sign. However, 
a trivial and rough comparison shows that 

Z(R.7, U~,T) 
exp(-4flfL2)<~ <,%exp(+4flbL2) (A.8) 

Z(R~_ , U ~ - ) 

Therefore the r.h.s, of (A.7) is bounded from above by 

[ U ,+)Z(R~,,  1 exp(+ 8/~ 3Lz) ~ exp(-2/~l?L) Z(R~+ ' ''~ - U ' ~ ' - )  
>,:..,,>~ L:/3.~ ~ - ~  u--~. +i  

~-s U-~, +i ! ] - t  (A.9) 
7 E .,:F 

We observe at this point that each one of the partition functions 

Z(R, U ~, + ), Z(R, + , U ~a, + ), Z(R~7 , U '~a, - )  

can be written as in (1.10), with weights that satisfy the condition of 
Proposition 1.1 with constant ~ =  1/2. Therefore, following ref. 4, we can 
apply Proposition 1.1 to write 

Z(R"+'U'~'~'+)Z(R~T'U~'-)=exp[ - A~R q~u~'+(A)] (A.10) 
Z(R, U ~, + ) 

so that (A.9) becomes 

exp (A)]}  exp(16fl~3L2) I~,:a(~.)>~l.2/32exp(--2fllY[) I--  ~=h ~veR'+ 
), e .:F A c", .d), ~ 0 

[ ]}-' x exp(-2Bl?l )  exp - ~ ~u~ +(A) (A.11) 
), /~ A ~ / ~  
)'E.~" A o d y # O  

We can use at this point two basic results in ref. 4 (see the proposition and 
the theorem in Sections 4.14 and 4.16, respectively) to conclude that, since 
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L~ >~L2>~L~t/2+~, for any given m > 0 ,  the ratio between the two sums in 
(A.11) is smaller than 

exp ( - m L-~) = exp( - m L  ~ ~) 

provided that fl is large enough. 
The lemma is proved. 

We now turn to the estimate of the second term in the r.h.s of (A.6), 
P((d~)" c~ r 

Let l =  L2/16 (we are assuming for simplicity that Lffl6 is an integer) 
and let, for i = 0 ..... N = 32, Ri be the rectangle 

{ L2 I L2 I) R,= x~R; o~,~<s  -~+( i+2) i  

Then we define P~ as 

Pi= P( {T c Ri} n c~) 

and we estimate from above P((~r162 ~') by 

i = 1  . - . N - - 5  

(A.12) 

In (A.12) we used the fact that, if the event ((d~)ec~C.g occurs, then, by 
construction, ~ is entirely contained in some R; because of if, with the 
index i # N  ..... N - 4  because of (~r and i # 0  again because of ft. 

In order to estimate each term in the r.h.s, of (A.12), we proceed in a 
slightly different way depending on whether i =  1 or i >  1, the reason being 
that in the case i =  1 the polygonal line ~ is very close to the discontinuity 
point of the lateral boundary coupling. 

Let us first consider the case i/> 2. In this case we bound from above 
the ratio PffP,v- 2 uniformly in i = 2 ..... N -  5. If we use the representation 
(A.7) for the probability of a given T, we may write 

Pi ~r= R,:dI~,)<~ L2/32 exp(--2fllYl) Z(R~ T , U ~, ~) Z(R~7, U ~, ~) 

P,v- 2 ~-.~'=gN-~:d~'~<~L2/32 exp(--2fl[~'l) Z(R~ , U ~, v) Z(R~ , U a~, ~) 
(A.13) 

Given T c Ri, let Fi(T) be its image under a vertical translation in R 2 by an 
amount ( N -  2 - i) 1/2. 
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Then clearly F i establish a bijection between the y in R i and those in 
RN_2, so that the r.h.s, is estimated from above by 

Z(R  + , U '~, ~) Z ( R (  , U ~ ,  r) 
sup (A.14) 

~,~R,:d~,I<.L2/~2 Z ( R ~ ,  U '~, r) Z(R~ , .  I, U ~ ,  r) 

which we write as 

Z(R; + , U '~'~, + ) Z ( R ( ,  U ''~, - ) 
sup 

),=Ri:dI'~,)<~L2/3Z Z ( R ~ ( ) , ) ,  U Ol~, di- ) Z ( R ~ [ . , ) ,  U i~ ,  - ) 

Z(R;_ , U'~,r) Z(R~,~;., U "~, - ) 
x (A.15) 

Z(R;7 , U ~ ,  - ) Z (R~ .~ ,  U '~, r) 

Let us consider the first ratio 

Z(R;+. , U '~'~, +r )  Z(R;7 , U ~'~, - ) 
(A.16) 

Z(R~ .~ ,  U '~, + ) Z ( R ~ , ,  U '~, +)  

If we divide numerator and denominator by Z(R, U '~, + )  and we use 
(A.10), we get that (A.16) is equal to 

exp [ ~ q~veR'+(A)+ ~ q~t/"R' + (A')] (A.17) 

A caA),~ ~ A' ~dFi('t ')~'O 

Notice that, for any pair A c/~, A' c /~  that intersect neither the horizontal 
part of 0/~ nor the lateral portion where U'~= 1 and are one the translate 
of the other 

A' = Fi(A ) 

we have 

~b u~' +(A') = qb v~' +(A) (A.18) 

by the very definition of the coefficients ~ueR'§ 
Therefore the difference between the two sums appearing in (A.17) 

becomes simply 
)' 

~' ~ue~ '+(A')-  ~vet' +(A) (A.19) 
A,A' 

)' where ~-.A.A" is a shorthand notation for the sum over all pairs, A, A' which 
intersect /Jy and AFi(Y),  respectively, and are such that one of the above 
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two requirements is violated by A or Fi(A) and by A' or F,:-~(A'), where 
F 7  ~ is the inverse of F~. 

Since ) ,cRy,  F ; ( ) , ) cRu_~,  and d(y)<~L2/32, we can bound from 
above (A.19), uniformly in i =  2 ..... N -  5, by 

A c'. R~ @ O A '  t'a R N _  2 .~ ~.~J 
A ~ {d/~\0R,}  ~ Q~ A' ~ { f 3 R \ O R N _ 2 }  ~ (ZJ 

(A.20) 

for a suitable constant C independent of/~. 
In (A.20) we used the exponential decay of qgue'~'+(A) in the "size" 

d(A) of A, the fact that the distance between the horizontal part of the 
boundaries of/~, Ri, RN_ 2 is, by construction and because d(?)~< L2/32, at 
least L2/32, and the fact that the boundary coupling U ea is equal to 6 on 
the lateral boundary of Ri, i = 2,..., N -  5, by construction. 

Let us consider the second ratio in (A.15), 

Z(R~7 , U ~ ,  r) Z(Ria~. I, U ~'~, - ) 

Z(R>7 , U '~, - ) Z(R~I;, I, U '~, "r) 

Using the Jensen inequality, we obtain 

Z(R~7, U~,  r )~<exp(2f l6  ~ (~r(x)) ~) 
Z(R~7, U :~, - ) (.,., .,,)~,~R.;: u~ .,- ,.)=6 

(A.21) 

Z(R~,,),  U .a, -)...<exp ( - 2 f l 6  ~ ( a ( x ) ) - )  
Z(R~(~,), U '~t~, r) (.~..,')~,'Ri,(,.); u~(.~. ,,)= ~ 

where ( a ( x ) )  ~ is a shorthand notation for the average of the spin a(x) in 
U ak r the Gibbs measure I~R._" and similarly for ( a ( x ) ) - .  

A simple Peierls ~irgument shows that 

( a ( x ) ) ~ <  - 1 + k  VxeOi , , tR~;  UO~(x ,y )=6  

with k--*0 as f l ~  co, so that from (A.21) we obtain that 

Z ( R ~ ,  U '~, "r) Z(R;,(~), U ~'~, - ) 

Z(R~7, U? ~, - ) Z(RS~,~, U ~ r.) 
~< exp( - f l  61+ 2fl 6kL2) (A.22) 

Finally, combining (A.20) and (A.22), we obtain that 

P i < ~ C e x p ( - f l 6 1 + 2 f l f k L 2 )  Vi=2 ..... N - 5  (A.23) 
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Let us now treat the case i =  1 by estimating from above the ratio 
P~/PN- i. We define the map F~ to be simply the clockwise rotation of rc 
around the center of the rectangle/~ and we proceed as before. In this case, 
by symmetry, the ratio (A.16) with Fi(y) replaced by F~ (y) is equal to one 
and the rest of the argument does not change. 

In conclusion, since l is proportional to L2 and k is very small for 
large fl, we get that, for any m > 0, 

P(d"~ c~ cg) <~ exp( -mL] ) (A.24) 

Thus, combining together (A.3), (A.4), Lemma A.1, and (A.24), we get the 
first part of the proposition. 

The second part follows immediately by a standard Peierls argument. 
The proposition is proved. 

Proof of Proposition 4.2. 
let z be the configuration 

and let 

Following the proof of Proposition 4.1, 

L2 
r ( x ) = + l  YxeOex, R with x2<~L2 16 

z(x) = - 1 otherwise 

U~R(x,y)=6 V(x,y)~OR with 0~<x2<L2 

UeR(x, y ) =  1 otherwise 

Let also S be the cigar-shaped neighborhood of the segment of the horizon- 
tal line at height L 2 - L 2 / 1 6  and joining the two vertical sides of R: 

S={(x,,x2)ER; [ x 2 - ( t 2 - ~ )  <~Cv"(tl--Xl)) (A.25) 

Notice that, for large values of L, ,  the region S is at distance at least L2/32 
from the upper horizontal side of R. 

Then it is immediate to see that 

uFR, I;I :'Dt "I ~+~+'-'~+ ((~/+" +'-" +)) >~ ~ ~ : R ,  (A.26) 

where 

s R, open CZ 



2D Dynamical Ising Model 1243 

Let ,~-R be the set of all possible configurations of F~,open. As in (A.7), we 
write 

Z t R  U ,'g 
O ?R  r t  g n r  x ~ ' ~ - -  ,' 

Z ( R  + , U ~ ,  r) Z ( R r ,  U '`R, r) 
x ~ exp(-2 /~l / ] )  Z(R, U 'R, - )  

F e  ,~R; F c  S 

(A.27) 

where R~ and R r are defined as in the proof of Proposition 4.1. 
The ratio Z(R,  U ~R, - ) /Z(R, U eR, r) is clearly bounded from below 

by 

exp[ - ~(2L2 + L, )fl] (A.28) 

Notice that, since the polygonal line F is contained in the region S, the 
boundary conditions in the partition functions Z(R~-,  U'~R,~) and 
Z ( R  r ,  U '~R, ~) are, by construction, + and - ,  respectively. Therefore, 
using the representation (1.10), we can write the ratio in the second factor 
in (A.27) as 

Z ( R ~ ' U ~ R ' z ) Z ( R r ' U ' ~ R ' Z ) = e x p [ - ~  q~v"~'+(A)] (A.29) 
Z(R.  U 'R, - ) A = R 

Using Proposition I.I and the fact that the polygonal line F is contained 
in the region S, it is easy to scc that 

A ~ R  A~AT#~ 
A c~ A't' ~: O 

for a suitable constant Co independent of LI. 
Thus (A.27) can be estimated from below by 

oxp(_Co_3  L,, z exp[-2 ,r,- o+(A,] ,A30, 
F e  3rR: F c  S R 

A = d ) ' d ' O  

We use at this point the fundamental result of ref. 4 (see Section 4.16), 
which says that 

exp [ - 2 f l , F ,  - ~ qsu~R. +(A)] 
F E c ~ R ; F ~ S  A c R  

>~ exp{ - f i L l  rp - C[log(Ll )'] max(6,2/e))} (A.31) 
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If we combine together (A.26)-(A.28), (A.30), and (A.31), we finally get the 
result. 

It is easy to show that the expression Proof of Proposition 4.3. 
appearing in part (a) is bounded from above by 

If21.~_ ~ /ao,'s+"s+' ,a+,v,~:, = t  ~- I 11sCo.+'+'-'+ ) 
.v E 0e~tlbottorn side of Q2) 

6 + , 6 + , +  6+/Tz  X', - / IR.+ ,ue . l  ' ~ ~. j = l )  (A.32) 

By monotonicity 

~7"~+'-'~+(~(x) =11~%, -'+)-< '~+"~+" +'+' "---/~ R, +'~+(r(x) = 1) 

A standard Peierls argument shows that, for each x~3ext(bottom side of 
Q._) and any given positive m 

0~< ~+,6+,  +,6+ /~R, (T(x)= 1 ) -  '~+"~+'+"~+ /aR.§176 (r(x)= 1)<~exp(-rnL t/2+~') 

(A.33) 

provided that fl is large enough. 
Clearly (A.33) proves part (a), since 

IF2] ~_ ~< 2L 2 

Part (b) follows immediately from part (a) and Proposition 4.1 applied to 
the rectangle R,,+~w Q,, +~. The proposition is proved. 
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